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AI: Pattern Recognition

• LLearning patterns from historical input /output 
data

• Urban Flood Modelling

– Input: RT Radar data

– Output 1: Model results

– Output 2: Measurements
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Literature Review – Hydrology & ANNs

– Auckland Sewer Overflow Model – Single CSO
• (Fernando, Zhang, Kinley, 2005)

– Data-Driven Modelling – Fluvial flow and flooding 
• (Solomatine, 2007)

– Data-Driven Modelling  - Optimisation using Genetic 
Algorithms
• (Solomatine, 2008)

– ANN - Flood Forecasting in River Arno, Florence, 
Italy 
• (Campolo, 2003)



Case study 1

RAPIDS: RAdar Pluvial flooding Identification for Drainage System

• Two ANNs:
– Input 1: RT Radar data

– Output 1: Rainfall 
prediction

– Input 2: Rainfall prediction

– Output 2: Flood severity 
prediction
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Objectives

• To replace SIPSON with a faster, AI-based DDM 

• To provide classification of flood status/severity 
at each manhole in a given network

–Optionally - full flood-level regression 
(metres)

• Speed is traded off with accuracy

• Ability to predict potential flooding severity



Methodology

• Designed rainfall (durations & return periods)

• SIPSON simulator

– simulated flood levels for 123 street manholes  

• ANN used = Multi-Layer Perceptron (MLP)

– Input: 

• rainfall intensity, cumulative rainfall, elapsed time

– Output: flooding level at each manhole 

– Different storms used for cross-validation and testing



• Classification 
Scheme:

• Vary  ANN setup parameters

– Input (number of 3-minute time steps)

– Output – prediction up to 90 minutes

Methodology (continued)
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Results  Training: Regression & Classification 
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Results  Test: Regression & Classification 
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Results  Test: Flood Level %Error



Results  Test: Classification %Error

•



Results  Typical Confusion Matrix

• • 30-minute prediction; 12-minute input window



Conclusions

• Novel features of RAPIDS Case Study 1
– Multiple locations modelled simultaneously

• For urban rather than fluvial flooding

– 3 minute sampling rate faster than other reported studies

• Regression with wrapper  Classification method 
successful

• Limit of prediction ≈ concentration time of network

• ANNs can model this 123 manhole network with in 
excess of 12-times improvement in computational time



Possible future research

• Test with 5-minute / 1-hour BADC rainfall data

• Use of rain radar to improve prediction

• Provide extra sewer flow data signals – more 
accurate?

• Experiment modify ANNs

• Try modelling each manhole with a separate 
ANN



Possible Benefits to Water Industry

• Faster modelling than conventional simulators

– Real time

• Forecasting prediction capability possible

• Flexible classification of flood severity

• Could potentially generate automated alerts

• Automated classification of flooding ‘hotspots’ 

– based on frequency of surcharge events at manholes
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Thank You

Questions?
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