

System Dynamics Modelling for the Simulation of Complex Water Systems

Dr Lydia S. Vamvakeridou-Lyroudia

- **1. SDM Overview**
- 2. Simple example
- **3. SDM in AQUASTRESS**
- 4. Case studies (2)
- 5. Running demo...

System Dynamics Modelling (SDM) or Systems Thinking

- Methodology for analyzing, studying and managing
- Complex Systems
- When formal analytical methods do not exist
- (or are hard to apply)
- By linking feedback mechanisms (loops and iterations)
- Breaking down the problem into sub-systems and submodels
- In a way similar to the conceptual thinking of nonprogrammers (conceptual models)
- No analytical formal simulation model necessary

Based on conceptual/graphical representation of relations among different system components.

- Visualisation using specialised software (interface)
- Models built gradually starting with few components, adding complexity interactively
- Differential equation + Integration simulated in a "friendly" way
- Different time scales for different subsystems

Suitable for developing a model in participatory process Acting as *Decision Support Tools (DST)* for stakeholders (nonengineers) and experts for examining alternatives/scenarios

History/Applications

- Industrial long-term management problems (Forrester 1961)
- Business strategy and policy problems
- Ecology / Complex environmental systems
- Complex water systems
- Participatory process
- Several Specialised software tools for visualisation....
- <u>SIMILE</u> (www.simulistics.com)
- (← Used here)

<u>VENSIM</u> (www.vensim.com)

(← Used here)

- STELLA (www.iseesystems.com)
- **SIMULINK(www.mathworks.com) (MATLAB)**
- POWERSIM (www.powersim.com)
- **MODELMAKER (www.modelmakertools.com) (BORLAND)**

Each SDM model consists of:

- Stocks/Compartments (Levels-State variables)
- Connectors (Arrows)
- Flows/Influences (Rates)
- Converters (Auxiliaries/Parameters)
- Decision processes (Priorities/Allocation/Relations)

Flow diagram

Causal Loop diagram

Flow diagram: For quantitative (numerical) model/simulation Causal Loop diagram: For qualitative (conceptual) model

- For each system, both Flow and Causal Loop diagrams can be drawn
- Causal loop helpful for studying "causality"

Analytical expression (i.e. $C_t = C_o(1+a)^t$) *NOT needed* Data needed:

- Drawing "Capital" as Stock, "Interest" as Flow, "Interest rate" as Parameter, "arrows" as influences
- Initial value for "Capital" (e.g. 10000)
- Interest rate (e.g. 10%)
- Relation: Interest=Capital*Interest_rate

SDM: Simple example

27/02/2008

Interest rate

SDM: Simple example-Causality

SDM in AQUATRESS

AquaStress

(http://www.aquastress.net)

- Mitigation of Water Stress through new Approaches to Integrating Management, Technical, Economic and Institutional Instruments
- EC FP6 IP project (2005-2009)
- € 14 million budget
- 35 partners

•

8 (very) different test sites/case studies

SDM in AQUATRESS

Within AQUASTRESS several Technical Options are investigated for mitigating water stress:

From the technical point of view each of these options are separately

- *Examined* (State-of-the-art methodologies, techniques)
- Assessed (Results, quantities, costs)
- Considered for each test site (local feasibility)

They are then combined using Conceptual and System Dynamics Modelling to simulate the water systems for each case study SDM models: low in detail, high in integration

- Identify a problem/system within the case study
- Develop a dynamic hypothesis explaining the cause of the problem (SDM -Conceptual model)
- Build a computer simulation model (SDM Quantitative model)
- Test the model (Validation)
- Use the model to produce and assess alternative policies
- With interactive process

27/02/20 (Experts→stakeholders→experts→stakeholders...)

13

SDM – AQUASTRESS: Component Types (1/2)

(1)	(2)	(3)	(4)	(5)
AQUASTRESS terminology	Water Resources	Water Resources	Water losses	Water users
Type of water system model component	Water bodies	Resources	Losses	Water users
SDM Functional type	Stocks	Converters: Inflows	Converters: Outflows	Converters: Outflows
Brief functional description	Storage/ Water sources	Water inputs to the system	Losses	Water users/ Water consumption
Abbreviation	S	I.	L	U
Dimension/Units	Volume - Mass	Volume/time	Volume	Volume/time
Component	Reservoir	Precipitation (Rainfall)	Evapo-transpiration	Agriculture
Abbreviation	RES	Р	ET	AWU
Component	Groundwater- Aquifer	Surface runoff	Groundwater losses	Industry
Abbreviation	GW	SR	GL	IWU
Component	Sea	Groundwater flow		Domestic
Abbreviation	SEA	GF		DWU
Component		Urban Waste water		Environment
Abbreviation		UWW		EWU
Component				Tourism/ Leisure
Abbreviation				TWU

SDM – AQUASTRESS: Component types (2/2)

	1	1		I	1
(1)	(2)	(3)	(4)	(5)	(6)
AQUASTRESS terminology			Options	Options	Options
Type of water system model component			Quantitativ e manipulato r	Qualitative manipulator	Transfer (mass flow)
SDM Functional type			Converters	Converters	Converters
Brief functional description	AQUASTRES S Option Code	Abbreviati on	Option that alters the volume	Option that alters the quality (e.g. concentratio n)	Option for Re-allocation without altering the volume
Abbreviation			V	Q	Т
Dimension/Units			Volume/tim e	Concentratio n	Volume/time
Waste water re-use	03.1.1	OWWR	~	V	
Desalination	03.1.2	ODES	v	~	
Drainage water re-use	03.1.4	ODWR			*
Water table management	03.2.1	OWTM	×		*
Groundwater remediation	03.2.2	OGRR		~	
Surface water control	03.2.3	OSWC	v		*
Enhanced reservoir management	03.2.4	OERM	v	~	*
Minimising water losses	03.3.1	OMWL	~		
Process optimisation in industry	03.3.2	OPOI	~	~	1
Domestic Water Use and conservation	03.3.3	ODUC	~		
Irrigation water management	03.4.1	OIWM	×	~	1
Tailoring crop patterns	03.4.2	OTCP	×		
Less water intensive processes	03.4.3	OLWI	~		

SDM – Conceptual model for technical options- Example (1)

<u>SDM – Conceptual model for technical options-</u> Example (2)

<u>SDM – Conceptual model for technical</u> options- Example (3)

AQUASTRESS SDM: Case studies

- 1. Kremikovtzi plant water system (Bulgaria)
- Industrial (competitive) water use limited water resources
- Improve the rate of water re-use
- Study operational policies for dry and very dry years

2. Merguellil catchment (valley) aquifer management – (Tunisia)

- Hydrological model (group of small dams+1 large dam)
- Study agricultural water use
- Improve aquifer recharge and management

Kremikovtzi system: Industrial water re-use

- The industrial plant of Kremikovtzi consist on of the biggest water consumers and water pollutants in the Sofia region.
- Water demands for the plant amound to 550 million m³ / year, a significant percentage of which is recycled within the plant.
- The plant takes about 50-60 million m3 /year fresh water from two nearby reservoirs

- The SDM model aims at defining operating scenarios, and propose water saving measures, so as to:
- **1.** Reduce the plant fresh water needs
- 2. Improve the rate of water re-use
- 3. Study operational policies for dry and very dry years

Case study: Kremikovtzi water system

Kremikovtzi conceptual model initial-July 2006- (1)

Kremikovtzi conceptual model October 2006- (2)

SDM: Initial SDM models

Initial SDM models for water quantities using different software tools (WB3-WB4-JWT-November 2006)

27/02/2008

24

>c	□②②◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇
<p< th=""><th>⊐d²≅n® Kremikovtzi total waste water (red): Causes Tree</th></p<>	⊐d²≅n® Kremikovtzi total waste water (red): Causes Tree
	(Kremikovtzi total waste water (red)) Waste water % to WWTPI Kremikovtzi total water (blue and purple) — KP waste water produced (Kremikovtzi total waste water (red)) (Waste water % to WWTPI) Waste water flow from KP to WWTPI (red)
	n 🖻 🛱 🖬 Kremikovtzi total waste water (red): Uses Tree 📃 📃
	Kremikovtzi total waste water (red) Flow from KP to sludge pond (red) (Kremikovtzi total waste water (red)) Sludge pond Sludge pond Waste water flow from KP to WWTPI (red) (Kremikovtzi total waste water (red))
	ー 印 四 面 B Kremikovtzi total waste water (red) : Loops
	Loop Number 1 of length 1 Kremikovtzi total waste water (red)
	Waste water flow from KP to WWTPI (red)

Flow from KP to sludge pond (red)

UNIVERSITY OF

E

E

27/02/2008

_ 1

Causalities with VENSIM

Kremikovtzi total waste water (red) Waste water % to WWTPI Flow from KP to sludge pond (red)

Delay buffer parameter —— Purple flow from sludge pond to Botunetz —— Sludge pond

(Delay buffer parameter) — Purple inflow from Sludge pond to KP buffer

(Delay buffer parameter) — Wasted water from sludge pond

Evaporation/Losses from Botunetzy

Time — Flow from Pancherevo to Botunetz \setminus

Water needs — Purple flow from Botunetz to KP buffer

Delay buffer parameter — Purple flow from sludge pond to Botunetz — Botunetz RES2

WWTPI — Purple flow to Botunetz from WWTPI

River Lesnovska /

River Matitza

Causalities with VENSIM

- WWTPI Flow from WWTPI to KP buffer (purple)
- Water needs Purple flow from Botunetz to KP buffer Buffer Kremikovtzi used water (purple)
- Delay buffer parameter Purple inflow from Sludge pond to KP buffer

(Water needs) — Used water flow to KP

(WWTPI) — Flow from WWTPI to KP buffer (purple) \setminus

(WWTPI) — Purple flow to Botunetz from WWTPI

Kremikovtzi total waste water (red) Waste water % to WWTPI Waste water flow from KP to WWTPI (red)

(WWTPI) —— wasted treated water from WWTPI /

_ 8 ×

SDM: Intermediate SDM Models

(May 2007-July 2007) Separate models for higher and lower quality fresh water

UNIVERSITY OF

TER

Centre for Water Systems

E

Clean industrial water model (2 sub-models)

AQUASTRESS

Final Model (Causal Loop Diagram)

33

Final SDM Model Kremikovtzi

KP permanent units

and potable water subsystems

KP Non permanent units, Ore and Sinter plant units subsystems

KP Sludge pond subsystem

KP Water re-cycling subsystem

KP Domestic Waste Water Subsystem

KP Clean Fresh Water Subsystem

Generating scenarios with SIMILE

😵 KR-cleanwater-new execution - Simile Eile Edit Add Window Help	
Run control Run settings	
•	KP Clean water needs, run 1— KP Clean water needs, run 2 Inflow series , run 1
Execute for 30.0 unit	22000
Current time 30.0 unit Display interval 1 unit	21000
water needs time series Kremikovtzi mine	20000
Kremikovtzi clean water node clean water (blue) from mine to KP Flow from Pancherevo to Kremikovtzi (blue)	19000
Clean water inflow to KP Section water needs mine water	18000 -
Pancherevo clean water to KP Pancherevo RES1	
Kremikovtzi total water (blue and purple) → → inflow → ● Inflow series	16000
flow to Botunetz drinking water evaporation losses	15000
-	14000-
	13000 10 20 30
	l ime

Generating scenarios with SIMILE

File Call
Image:
Concreting Run settings Page 1 Page 2 Page 3 Page 4 Execute for Current fine 30.0 unit To KP buffer prophe Buffer resure prophe Studge Fond Buffer to WV/TP To KP buffer resure used water Studge Fond Buffer to WV/TP water to WV/TP purple water to KP Diplay interval 1 unit The V Name Kienklovizi popke Studge Fond Buffer Kendovizi used water Studge Fond Buffer Kendovizi to WV/TP purple water to KP reflow fon KP Studge Fond Buffer Kendovizi buffer KES2 Studge Fond Buffer Kendovizi to WV/TP purple water to KP reflow fon KP 200 40000000 141120000 210000 129120000 129120000 20000000 229000000 229000000 139420000 22912201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 220120201 2201212201 201212201000 <td< td=""></td<>
Run control Run settings Page 1 Page 2 Page 3 Page 4
Image: Second for second for second
Execute for Current time 30.0 unit Display interval 1 non Display interval 1 non Display interval 1 non Butter to Kamikovta Display interval 1 non Display interval 1 non Non F Non
Execute for Current line 30.0 unit Diplay interval 1 unit To KP buffer eucle from WVTPI pupple Studge Pond Botunetz RES2 Kemikovta tod lind water water meda pupple water to KP profile Diplay interval 0 4000.0000 14112.0000 0.000 1000.0000 23000.0000 20160.0000 20160.0000 20000.0000 20000.0000 20000.0000 20000.0000 20000.0000 20000.0000 20000.0000 20160.0000 20000.0000 20000.0000 20160.0000 20000.000 20000.0000 20000.000 20000.000 <t< td=""></t<>
Execute for Current line 30.0 unit Ime \ Name Kremkovta: water needs To KP buller revue from VV/TPI puple Buller bit water needs Buller revue from VV/TPI puple Buller bit water needs Buller bit water needs Buller bit water needs Water needs<
Current time 30.0 unit Kemikovta Buffer framkovta Buffer framkovta Skidge Pond Buffer framkovta Skidge Pond Buffer framkovta Water needs Display interval Display interval <th< td=""></th<>
Under water
Display interval 1 uead water (puple) uead water (puple) uead water (puple) pond Clean water to Kremikovtz (blue) Botunetz RES2 0 40000.0000 110000.0000 10000.0000 20160.0000 20160.0000 20180.0000 2
Clean water to Kremikovital (blue) Botunetz RES2 Sludge Pond Clean water to Kremikovital (blue) Botunetz RES2 Sludge Pond Clean water to Kremikovital (blue) Botunetz RES2 Sludge Pond Clean water to Kremikovital (blue) Botunetz Remixovital water (purple) WVTPI Industrial River Matiza SR Purple flow to Botunetz from WVTPI Purple flow to Botunetz from WVTPI Purple flow to Botunetz from Subge pond History tait to KP water to KP water to KP water water fom WVTPI Purple flow to Botunetz from Subge pond History tait to KP water to KP water to KP water to KP water to KP water to KVTPI purple water to KP water to KP water to KVTPI purple water to KP water to KVTPI purple from Botunetz millow fom Pancherevo to Botunetz to KPE millow and purple) purple water to KP water to KVTPI purple from Botunetz millow fom MVTPI purple water to KP water to KVTPI purple water to KP water to WVTPI purple water to KP water to WVTPI purple water to KP water to WVTPI purple water to KP water water produced water fom Subge pond History tai kP and tai 2232 2232 233 233 233 233 233 233 233
Clean water to Kremikovtzi (blue) Botomzt RES2 0.0 40000.0000 14112.0000 0.0000 10000.0000 12811.2000 22000.0000 20160.0000 20160.0000 20176.0000
Boundate RE-S2 Studge Prod 1.0 40264.1502 14112.0000 21840.0000 12911.2000 32000.0000 20160.0000 20132.0751 11840.0000 W/TPI Industrial 9.0166.0000 20132.0751 11840.0000 20150.0000
bidger Kremikovtzi used water (purple) 2.0 40511.9668 14112.0000 4736.7549 23024.0000 16261.5700 32000.0000 20160.0000 20255.9834 11840.0000 WVTPI Industrial 3.0 40744.2589 14112.0000 2787.1649 24208.0000 19452.3766 32211.3201 2023.1317 2037.1294 11918.1885 Prople flow to Botunetz from WWTPI purple flow to Botunetz from WWTPI 5.0 41165.4373 14292.6219 12280.4421 26735.3610 25440.7889 32595.4071 20535.1065 20582.7186 12060.3006 Purple flow to Botunetz from WWTPI Furple flow to Botunetz 411355.8619 14374.5745 14423.0099 28003.2737 28235.5408 32769.4671 20555.1065 20582.7186 12060.3006 VEX buffer purple from Botunetz wasted treater from wWTPI 1733.8325 14451.3361 17393.409 2927.27026 30956.8409 32932.2348 2077.5313 12244.9395 VEX buffer purple from Botunetz 9.0 41855.306 14523.1663 19992571 30546.4425 33360.4425 33080.46895 20843.3544
WWTPI Industrial River Lesnovska SR River Lesnovska SR 3.0 40744.2589 14112.0000 7287.1649 24208.0000 19462.3766 32211.3201 20293.1317 20372.1294 11918.1885 River Lesnovska SR River Lesnovska SR 4.0 40961.6226 14295.221 1276.78872 25470.1895 2216.7248 32405.5734 20480.9113 11991.5422 Purple flow to Botunetz from WWTPI Furple flow to Botunetz from Sudge pond Inflow to KP buffer from sludge pond Inflow to KP buffer from Sudge pond Inflow from Pancherev to Botunetz 14355.651 14374.574 14623.0563 39806.8409 32332.3488 20747.3804 20766.9162 12184.9694 8.0 41700.0605 14523.1663 19891.2571 30546.4425 33404.4225 30384.544 20950.3022 12241.1351 9.0 41955.2306 14593.3481 22752.73026 303908.1180 38172.0509 33360.0484 21016.8305 21000.0000 12343.2179 9.0 42298.021 1471.7813 27272.3322 34376.7229 40352.0652 33484.1845 <t< td=""></t<>
Answer Lesnowska SR River Matiza SR purple flow to Botunetz from WWTPI Purple flow to Botunetz from WWTPI Purple flow to Botunetz from Sudge pond Purple flow to Botunetz from Sudge pond Purple flow to RP buffer from Sudge pond Purple Mater (blue and purple) purple water to KP From Rovari total water (blue and purple) purple water to KP From Rovari total water (blue and purple) purple water to KP From Rovari total water form Sudge pond inflow from Pancherevo to Botunetz Evaporation-Losses from Botunetz From Rovari water needs To R Kremikovtzi total ed waster water to WWTPI waste water produced waster due and to to to WWTPI waste water 20
River Maitza SR purple flow to Botunetz from VWTPI Purple flow to Botunetz from WWTPI Purple flow to KP buffer from sludge pond Inflow for KP buffer from sludge pond Inflow for KP buffer from sludge pond Inflow for MPancherevo to Botunetz Evaporation-Losses from Botunetz Evaporation-Losses from Botunetz Evaporation-Losses from Botunetz I 10.0 42083.0502 14253.1361 12280.4421 26735.3610 25440.7889 32595.4071 20535.1055 20582.7186 12060.3006 9.0 41155.4373 14292.6219 12280.4421 26735.3610 25440.7889 32595.4071 20535.1055 20582.7186 12060.3006 9.0 41153.8352 14451.3310 17393.8409 29273.7026 30905.8409 32292.2393.4585 20643.3544 2050.0302 12241.351 9.0 41855.2306 14590.3481 22613.6537 31821.3051 35871.9955 33227.0660 20933.0516 20927.6153 12294.0144 10.0 42000.0000 14653.1361 25259.49494 33098.1180 3817.9955 33227.0660 20933.0516 20927.6153 12294.0144 10.0 42010.0000 14653.1361 25259.49494 30908.1180 3817.9055 32217.0059 33360.0484 21016.8305 21000.0000 11343.2179 11.0 42134.
Burgle flow to Bottnetz from Studge pond Purple flow to KP buffer from studge pond Inflow for MW/TPI Kremikovtzi total water (folue and purple) purple water to KP 6.0 41355,8619 14374,5745 14823,0099 28003,2737 28236,5408 32769,4581 20644,7586 20677,9309 12124,6395 Wasted water from Studge pond inflow for MowTPI Kremikovtzi total water from Stunge pond inflow from Studge pond inflow from Studge pond inflow from Studge pond inflow from Studge pond inflow from KP red to studge pond inflow from KP red
7 Public How to WD buffer from studge pond Inflow to KP buffer from studge pond 7.0 41533.8325 14451.3310 17393.8409 29273.7026 30905.8409 32932.3498 20747.3804 20766.9162 12184.9694 Wasted treated water from WWTPI purple water to KP 9.0 41555.2306 14590.3481 22613.6537 31821.3051 35871.9955 33222.0460 20933.0516 20937.6153 12241.3351 9.0 41855.2306 14590.3481 22613.6537 31821.3051 35871.9955 33220.0460 20933.0516 20927.6153 12294.0144 10.0 42000.0000 14653.1316 25259.4994 33098.1180 38172.0509 33380.0484 21016.8305 21000.0000 12343.2179 11.0 42134.9976 14711.7813 27927.3362 34376.729 40352.0552 33484.1845 21095.0362 21067.4988 12389.1483 12.0 42260.8238 14766.5254 30615.7791 35656.9750 42413.4048 33600.0000 21130.0119 12432.0000 13.0 42378.0502 14807.6100
Inflow to KP buffer purple from Botunetz 8.0 41700.0605 14523.1663 19991.2571 30546.4425 33084.6895 20843.3544 20850.0302 12241.3351 Wasted treated water from WWTPI 9.0 41855.2306 14590.3481 22613.6537 31821.3051 35871.9955 33227.0660 20933.0516 20927.6153 12294.0144 Wasted treated water from WWTPI 10.0 4200.0000 14653.1361 25259.4994 3008.1180 38172.0509 33360.0484 21016.8305 21000.0000 12343.2179 Purple water to KP inflow from Pancherevo to Botunetz 10.0 42080.022 14717.7813 27927.3362 34376.7229 40352.0552 33484.1845 21095.0362 21067.4988 12391.4833 Wasted water from sludge pond 11.0 42134.8076 14717.665.5254 30157.791 35656.9750 42413.4048 33600.000 21168.0000 21168.0000 21169.4230.0000 12433.2009 12471.9593 Wasted water from sludge pond inflow from KP red to sludge pond 14.0 42487.2197 14865.2272 36049.2997 3821.909 46185.0999 33808.6591 21299.4552 21243.6099 12509.2039
Image: Wasted treated water from WWTPI 9.0 41855.2306 14590.3481 22613.6537 31821.3051 35871.9955 33227.0660 20933.0516 20932.6153 12294.0144 Image: Wasted treated water from WWTPI purple water to KP 10.0 4200.0000 14653.1361 25259.4994 33098.1180 38172.0509 33360.0484 21016.0305 21000.0000 12343.2179 Image: Wasted treated water from Subject to Bolunetz purple water to KP 11.0 4213.4976 14711.7813 27927.3362 34376.7229 40352.0552 33484.1845 21096.0302 21007.0988 12389.1483 Image: Wasted water from sludge pond 11.0 42378.0502 14817.6000 33323.5148 36938.7116 44357.3499 33700.79891 21236.0388 21189.0251 12471.9593 Image: Wasted water from Sudge pond 14.0 42487.2197 14865.2272 36049.2997 38221.9009 46185.0999 33808.6591 21299.4552 21243.6099 12509.2039 Image: Waste water needs 16.0 42888.476 14909.6186 38791.9587 40731.9607 449456.4292 33999.7758 21431.7106 12576.2170 Image: Waste water
Kremikovtzi total water (blue and purple) 10.0 42000.0000 14553.1361 25259.4994 33098.1180 33172.0509 33360.0484 21016.8305 21000.0000 12343.2179 purple water to KP purple water to KP 11.0 4213.0976 14711.7813 27927.3362 34376.7229 40352.0552 33484.1845 21095.0362 21067.4988 12389.1483 inflow from Pancherevo to Botunetz Evaporation-Losses from Botunetz 13.0 42378.0502 14817.6000 33323.5148 36988.7116 44357.3499 33707.9981 21236.0388 21109.0251 12471.9593 wasted water from sludge pond 14.0 42487.2197 14865.2272 36049.2997 3821.9009 46185.0999 33808.6591 21294.4238 12509.2039 inflow from Pancherevo to Bulunetz 15.0 42688.4212 14909.6186 38791.9589 39506.3414 47897.7766 33902.4401 21358.5373 21294.4238 12543.9028 Kremikovtzi total red 16.0 42683.4212 14950.9761 41550.3835 40791.9607 49496.4292 33989.7758 21143.5587 <td< td=""></td<>
11.0 42134.9976 14711.7813 27927.3362 34376.7229 40352.0652 33484.1845 21057.0562 21067.4588 12383.1483 12.0 42260.8238 14766.5254 30615.7791 35656.9750 42413.4048 33600.0000 21168.0000 21130.0119 12320.0000 13.0 42378.0502 148176.000 33323.5148 36938.7416 44357.3499 33707.9981 21296.0388 21189.0251 12471.9533 14.0 42477.1797 14865.2272 36049.2997 38221.9009 4565.0999 33808.6591 21294.4552 21243.6099 12509.2039 15.0 42888.476 14909.6186 38791.9589 39506.3414 47897.7766 33902.4401 21358.5373 21294.4238 12543.9028 16.0 42883.4212 14950.9761 41550.3835 40791.9607 49496.4292 33989.7758 21413.5587 21341.7106 12576.2170 18.0 42883.2219 15025.3454 47110.410 43366.3688 52355.5174 34416.7369 21512.4443 21426.610 12684.2927 waste water to WWTPI waste water poduced waste water poduced 19
12.0 42260.8238 14/66.5254 30615.7/91 3565.6.9/50 42413.4048 33500.0000 21188.0000 21130.4119 12432.0000 Evaporation-Losses from Botunetz 13.0 42378.0502 14817.6000 33323.5148 36938.7416 44357.3499 33707.9981 21236.0388 21189.0251 12471.9593 Wasted water from Studge pond 14.0 42487.2197 14865.2272 36049.2997 38221.9009 46185.0999 33302.4401 21388.5373 21294.4238 1259.2039 Minfow from KP red to studge pond 15.0 42588.8476 14909.6186 38791.9589 39506.3414 47897.7766 33302.4401 21388.5373 21294.4238 12543.9028 To KP buffer re-use from WWTPI purple 16.0 42683.4212 14950.9761 41550.3825 40791.9607 49496.4292 33989.7758 21413.5587 21341.7106 12576.2170 Waste water to WWTPI 18.0 42853.2219 15025.3454 47110.4100 43365.5888 52355.5174 34141.67369 21512.4443 21466.610 2660.3347 waste water poduced 19.0 42292.2931 1508.7110 4991.01038 44654.9324
13.0 423/8.0502 1487/5000 33323.5148 35938/7416 44357.3499 33707.9981 21236.0388 21189.0251 12471.9593 13.0 423/8.0502 14817.5000 33323.5148 35938.7416 44357.3499 33707.9981 21236.0388 21189.0251 12471.9593 14.0 42487.2197 14865.2272 36049.2997 38221.9009 46185.0999 33302.4401 21358.5373 21294.4238 1259.2039 15.0 42588.8476 14999.6186 38791.9589 39506.3414 47897.7766 333902.4401 21358.5373 21294.4238 12543.9028 16.0 42683.4212 14950.9761 41550.3835 40791.9607 49496.4292 33398.7758 21413.5587 21341.7106 12576.2170 17.0 42771.4011 14989.4911 44323.5284 42078.6652 50982.0377 34071.0781 21464.7792 21385.7005 12606.2899 waste water to WWTPI 18.0 42853.2219 15025.3454 47110.4100 43365.3688 52355.5174 3414.67369 21512.4443 21466.610 12660.23897 waste water poduced 19.0 42929.2931
Inflow from KP red to sludge pond 14.0 42487.2197 14865.2272 36049.3997 38221.9009 46185.0999 33808.6591 21299.4552 21243.6099 12509.2039 Kremikovtzi water needs 15.0 42588.8476 14909.6186 38791.9589 39506.3414 47897.7766 33902.4401 21358.5373 21294.4238 12543.9028 To KP buffer re-use from WWTPI purple 16.0 42683.4212 14950.9761 41550.3835 40791.9607 49496.4292 33989.7758 21413.5587 21341.7106 12576.2170 Waste water to WWTPI 18.0 42853.2219 15025.3454 47110.4100 43365.3688 52355.5174 3416.7369 21512.4443 21466.610 12634.2929 Waste water produced 19.0 42929.2931 15083.7503 52721.7415 45944.4638 54769.4496 34282.5775 21598.0239 21606.02897 Waste delan water 20 20.0 43000.0000 15089.7503 52721.7415 45944.4638 54769.4496 34282.5775 21598.0239 21500.0000 12684.5537
Kremikovtzi water needs 15.0 42988.8476 14309.6186 3873.5983 33506.3414 47837.7766 33302.4401 21398.5373 21294.4238 12943.3028 To KP buffer re-use from WWTPI purple 16.0 42683.4212 14950.9761 41550.3835 40791.9607 49496.4292 33398.7758 21413.5587 21341.7106 12576.2170 Waste water to WWTPI purple 17.0 42771.4011 14989.4911 44323.5284 42078.6652 50982.0377 34071.0781 21464.7792 21385.7005 12666.2389 Waste water to WWTPI 18.0 42853.2219 15025.3454 47110.4100 43366.3688 52355.5174 34146.7369 21512.4443 21466.610 12664.2929 Waste water produced 19.0 42929.2931 15085.7110 49910.1038 44654.9924 53617.7225 34217.71209 21556.7861 21466.610 12600.0347 Wasted clean water 20 20.0 43000.0000 15089.7503 52721.7415 4594.4638 54769.4496 34282.5775 21598.0239 21500.0000 12684.5537
To KP buffer re-use from WWTPI purple 15.0 42683.4212 14300.3761 41500.3833 40/31.5007 43936.4232 33353.7736 21413.3387 21413.0387 2141.7105 12376.2170 Kremikovtzi total red 17.0 42771.4011 14989.4911 44323.5284 42078.6652 50982.0377 34071.0781 21463.7005 12606.2989 waste water to WWTPI 18.0 42853.2219 15025.3454 47110.4100 43366.3688 52355.5174 34146.7369 21512.4443 21426.6110 12634.2927 Waste water produced 19.0 42929.2931 15058.7110 49910.1038 44654.9924 53617.7225 34217.1209 21556.7861 21464.6466 12604.2937 Waste delan water 20 20.0 43000.0000 15089.7503 52721.7415 45944.4638 54769.4496 34282.5775 21598.0239 21500.0000 12684.5537
Kremikoviz total red 17.0 4277.3-011 14363.4-311 44325.3264 42076.6632 3366.0577 3407.0781 21464.732 21366.7003 12506.2363 waste water to WWTPI 18.0 42853.2219 15025.3454 47110.4100 43366.3688 52355.174 34146.7369 21454.413 21426.6110 12684.2397 waste water produced 19.0 42929.2331 15058.7110 49910.1038 44654.9324 53617.7225 34217.71209 21556.7861 21464.6466 12606.23637 waste dclean water 20 20.0 43000.0000 15089.7503 52721.7415 45944.4638 54769.4496 34282.5775 21598.0239 21500.0000 12684.5537
A wase water low with 100 4203-2213 1023-3414 4710-100 4300-3065 3233-3174 34146-786 2142-6416 1203-237 A waste delan water 20 10.0 4203-231 1508.7110 49910.1038 44654.924 53617.7225 34217.1209 21426.6466 1260-3247 A waste delan water 20 20.0 43000.0000 15089.7503 52721.7415 45944.4638 54763.4496 34282.5775 21598.0239 21500.0000 12684.5537
→ wasted clean water 20 20.0 43000.0000 15089.7503 52721.7415 45944.4638 54769.4496 34282.5775 21598.0239 21500.0000 12684.5537
Kremikovizi water needs time series 21.0 43065 7046 15118 6167 55544 5085 47234 7162 55811 4414 34343 4345 21636 3637 21532 8523 12707 0708
22.0 43126,7467 15145,4546 58377,6415 48525,6887 56744,3899 34400,0000 21672,0000 21573,3734 12728,0000
23.0 43183.4452 15170.4000 61220.4257 49817.3250 57568.3395 34452.5636 21705.1151 21591.7226 12747.4485
24.0 43236.0988 15193.5806 64072.1921 51109.5735 58285.6905 34501.3974 21735.8803 21618.0494 12765.5170
25.0 43284.9870 15215.1162 66932.3155 52402.3868 58895.2012 34546.7562 21764.4564 21642.4935 12782.2998
26.0 43330.3713 15235.1195 69800.2115 53695.7213 59397.9913 34588.8790 21790.9938 21665.1857 12797.8852
27.0 43372.4962 15253.6957 72675.3346 54989.5367 59794.5440 34627.9896 21815.6334 21686.2481 12812.3561
28.0 43411.5901 15270.9434 75557.1756 56283.7962 60085.3085 34664.2970 21838.5071 21705.7951 12825.7899
29.0 43447.8661 15286.9550 78445.2598 57578.4655 60270.7027 34697.9970 21859.7381 21723.9330 12838.2589
30.0 43481.5230 15301.8167 81339.1444 58873.5135 60351.1144 34729.2721 21879.4414 21740.7615 12849.8307 📷

KP Results-Alternatives

Ognjanovo reservoir volume-Very dry scenarios - SP gradually reduced

KP Results-System total recycling rate

Very dry	All on								0.6276
95%	OP sto	ops							0.6230
	OP sto	ops+ O	ther wa	ter use	ers (Pri	ority 0)			0.6374
	OP sto	ops+ N	on pern	nanent	units (Priority	1)		0.6298
	OP sto	ops+ N	on pern	nanent	units (Priority	2)		0.6299
	OP sto	ops+ N	on pern	nanent	units (Priority	3)		0.6010
	OP sto	ops+ N	on pern	nanent	units (Priority	3)+ SI	P 5/6	0.5906
	OP sto	ops+ N	on pern	nanent	units (Priority	3)+ SI	P 4/6	0.5793
	OP sto	ops+ N	on pern	nanent	units (Priority	3)+ SI	P 3/6	0.5671
	OP sto	ops+ N	on pern	nanent	units (Priority	3)+ SI	P 5/6+Lesnovska releas	e 0.5661
	OP sto	ops+ N	on pern	nanent	units (Priority	3)+ SI	P 4/6+Lesnovska releas	e 0.5539
	OP sto	ops+ N	on pern	nanent	units (Priority	3)+ SI	P 3/6+Lesnovska releas	e 0.5405
Dry	Recyc	le 90%	+ Retu	rn WQ	3				0.6224
	Recyc	le 90%)						0.5785
Normal	Recyc	le 75%)						0.5330
	Recyc	le 70%)						0.5045
	Recyc	le 65%)						0.4759
	Recyc	le 60%)						0.4474

AQUASTRESS SDM: Case studies

- 1. Kremikovtzi plant water system (Bulgaria)
- Industrial (competitive) water use limited water resources
- Improve the rate of water re-use
- Study operational policies for dry and very dry years

2. Merguellil catchment (valley) aquifer management – (Tunisia)

- Hydrological model (group of small dams+1 large dam)
- Study agricultural water use
- Improve aquifer recharge and management

Merguellil conceptual model (Tunisia)

Merguellil SDM (Tunisia) Initial model

Merguellil SDM (Tunisia) final model

Merguellil SDM (Tunisia) final model

Merguellil SDM (Tunisia) final model

50

Merguellil SDM (Tunisia) detail

SDM: Advantages/Disadvantages

Advantages

- Easy to build models for complex, "non-specific" systems
- Good graphics environment
- Easy to make others understand and get involved
- Easy to run and compare scenarios
- SDM: Modelling by "afterthought"
- Especially useful for "time series" runs

Disadvantages

- Iterative procedures within the same time step to be avoided
- Need for special "simulation schemes"/logic (e.g. continuity)
- Multiple variables for the same component need to be separated

Time for demo display...