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Abstract 

This work enhances a simplification algorithm for water network models with routines 

to identify the simplification range and to classify the importance of pipes in the 

reduced network model. 

To aggregate a water network model, information about its control components is 

necessary. The variables used to optimise the operational schedules of the water supply 

network with the given model have also to be known. Basing on this, a simplification 

range is identified in the water network model. Afterwards, the model is linearised 

around a given working point and all redundant nodes are eliminated with Gauss-Jordan 

elimination. The remaining nodes are re-linked with pipes according to the structure of 

the simplified model. Non-important links will be deleted to keep the simplified model 

compact and with as less loops as possible.  

The simplification algorithm is presented in detail in theory as in practise with an 

example network. Finally, it is applied in case studies to two water network models and 

the results are discussed.  

The necessary information about the implementation of the developed computer 

program code is described alongside as well as essential information about the use of 

existing software. 
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I — INTRODUCTION 

The water industry in the United Kingdom spends approximately £70,000,000 per 

annum on electricity for pumping water supply. Similarly, almost 7% of the electricity 

consumed in the United States is used by the municipal water utilities. Since treated 

water pumping compromises the major fraction of the total energy budget, optimised 

operational schedules can improve the energy efficiency of a water distribution system. 

System operators make these operational schedules with the aid of special decision 

support software. This software bases on mathematical models, which contain in some 

cases more than 2000 components. During an optimisation process for the operational 

schedules, these water network models are simulated many times for different 

schedules. However, only very small part of the simulation results is normally 

necessary, so an aggregated model is adequate. It should contain all control components 

of the original model and the variables, which are used to calculate the quality of the 

simulation. Aggregated — simplified — models will require less computation time and 

provide all information needed for the optimisation. Hence they will speed up the 

optimisation process and allow bigger models to be calculated. 

This work uses a simplification algorithm Ulanicki et al (1996) — designated as “static 

simplification” later — to derive simplified models. Input components, as sources, tanks 

and reservoirs and valves, will be considered as well as those variables, which are 

needed for the optimisation process.  

The first chapter in this report will start with an introduction into hydraulic network 

models and their components, mainly nodes and pipes. Afterwards, the simulation time 



Maschler, T. and D.A. Savic, (1999) Simplification of Water Supply Network Models through 
Linearisation, Centre for Water Systems, Report No.99/01, School of Engineering, University of Exeter, 
Exeter, United Kingdom, p.119. 

9 

problem will be discussed, followed by an overview of simplification approaches in 

literature. 

Then, the simplification algorithm of Ulanicki et al (1996) will be presented. It 

linearises the network equations in an elegant way around a given working point and 

reduces the linear model with Gauss-Jordan elimination. From the reduced linearised 

model, a simplified non-linear model is recovered. Afterwards, an approach for the 

identification of the simplification area in the network model will be formulated. Next, 

it will be shown with brief algebraic examples, that the static simplification carries out 

network model component based simplification approaches like unification of nodes, 

parallel pipes and pipes in series and deletion of trees. In addition, the static 

simplification algorithm will be enhanced with the facility to delete pipes with very 

little influence on the simulation results, low conductance pipes. 

After this theoretical part, the implementation of the static simplification algorithm will 

be discussed. It will be implemented as a module in the geographical information 

System StruMap Structural Technologies Ltd. (1996). The routines will be coded in 

C++. As compiler, the Borland C++-Builder Calvert (1997) will be used. 

Following, a network model will be simplified and its simplification procedure 

discussed in detail. As case studies, the models of two water networks in Yorkshire, 

United Kingdom, will be simplified. One of them is very large, with around 2100 

network components. The errors of the simplified models at the working point will be 

analysed, as well as in 24h simulations. Finally, the resulting reduction in solving time 

will be estimated. 
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II — PROBLEM FORMULATION 

II. 1. Introduction to Hydraulic Network Models 

This section introduces water network models. Firstly, the purpose of modelling water 

networks will be discussed. Then the macroscopic structure of water network models 

will be explained, followed by a short description of pipes and nodes, the main 

components of water network models. Afterwards, different simplification methods are 

presented. Finally, the aim of this report, to reduce the simulation time of water network 

models, will be formulated. 

II. 1. 1. Purpose of Water Network Models 

Figure 1 below shows a typical rural water network model with approximately 1100 

nodes and 1300 pipes. 
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Figure 1. The Skipton Water Network Model. 

Water distribution systems supply water to households, companies, fire departments and 

farms. The aim of water supply companies is to do this with an available head between 

20 and 50m, and with as little pipe leakage as possible. Pipe leakage increases with 

higher pressure. Therefore, a suitable compromise must be found. This is achieved by 

optimising the schedules of the control devices in the network. Control devices are 

mainly pumps and valves. 

Water 
Network 

Model

Input Output

Cost 

Function
Flow in Pipes, 

Head in Nodes
Control Schedules, 

Demands

Costs caused by 

the Input Vector

 

Figure 2. Input and Output for a Water Network Model. 
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Water network models are used to determine a convenient system input vector, which 

consists of pump, valve and source schedules as well as a demand vector for a given 

water network. The quality of the input vector is measured with a cost function. It 

weighs the input and output of the water network model and gives a scalar value 

(mainly in a currency unit) for it. This scalar value expresses the costs caused by the 

input vector. 

II. 1. 2. Network Topology 

Hydraulic water networks consist generally of the following components: 

� Demand Nodes (nodes in network theory) 

� Pipes (arcs in network theory) 

� Valves 

� Pumps 

� Reservoirs 

� Sources 

Pipes connect demand nodes, valves, pumps, sources, and reservoirs. One or more pipes 

can be connected to a demand node. A valve is connected two pipes to two nodes. A 

source is usually connected to one pipe. A Reservoir has two pipes, one to refill it and 

one for the outflow. One pipe connects exactly two of the other network components 

above. 

Generally, there are two types of pipe structures in a water network model: 

� Trees 

� Loops 

 A tree is a non-closed chain of connected pipes in the water network model. It can have 

sub-trees. A loop is a closed chain of connected pipes. 
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Figure 3. Example of a Tree (left) and a Loop (right) Network Structure. 

The tree structure in Figure 3 has one sub-tree. The sub-tree starts at the second topmost 

node from the left and goes to the right hand side. The loop structure contains two 

independent loops, one at the top and one at the bottom. 

In a network consisting of NN nodes and NP pipes, the number of loops NL in a network 

can be determined using the following relation: 

(1) NL = NP + 1 – NN 

The derivation of this equation is explained in the Appendix, Chapter VIII. 2.   

II. 1. 2. a. Nodes 

A node is a termination point for one or more pipes. It has a certain demand 

(withdrawal) and a unique, fixed geographic position with an elevation above ordinance 

datum. The available head at a  demand node is the difference between the total head 

and the elevation. 

Table 1. Attributes of a Node. 

Node 

 x  m Geographic Location 

 y  m Geographic Location 

 z  m 
Elevation above  
Ordinance Datum 

 q  l/s Demand 

 H_T  m Total Head 

 H  = H_T – z m Available Head 
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The equilibrium of volumetric flow rates of all pipes connected to the node is calculated 

using the following equation: 

(2) ∑
=

=

j
PN

i

j

j

i qQ
1

  

k

j

i QQ = :  flow in pipe k l/s 

jq :  demand at node j l/s 

j

PN :  Number of pipes connected to node j. 

A demand node is a node with a certain water withdrawal. Valves, sources, and 

reservoirs will be treated in this report as nodes because of their fixed geographic 

location. Sources have negative demands, as flow is put in the water network through 

them. The sign of the demand of reservoirs is negative, when it is being filled with 

water; when water is withdrawn, it is positive. Valves have no demand. The headloss in 

a valve is described by additional equations. 

II. 1. 2. b. Pipes 

A pipe connects two nodes with each other. It has a start and an end node. 

Table 2. Attributes of a Pipe. 

Pipe 

 N_s   Start Node 

 N_e   End Node 

 d  mm Diameter 

 l  m Length 

 C  — Roughness Coefficient 

 delta_H  m Head Loss 

 Q   l/s Flow 

A pipe has a certain diameter and a length. The head loss between the start and the end 

node of the pipe is expressed in this report using the Hazen-Williams equation (4). 

Other equations, which give a relation between the flow and the head loss in a pipe, are 

the one of Colebrook-White and the Manning-Equation (see Chadwick and Morfett 

(1993)). 

The head loss between the start and the end node are determined using the following 

relationship: 
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(3) Pkijji NkHH ,,2,1 K=∆=∆=−  

iH , jH :  total heads at nodes i,j  m 

kij ∆=∆ : head loss between nodes i,j m 

NP: Number of pipes in the hydraulic network. 

The relationship between head loss k∆  and flow kQ  is expressed with the Hazen-

Williams equation (Chadwick and Morfett (1993)): 

(4) Pk

e

kkk NkQQr ,,2,1
11 K=⋅=∆

−
 

rk:  pipe resistance in pipe k 

k∆ : head loss in pipe k m 

Qk: flow in pipe k l/s 

Constant:  e1:= 1.85 

The Hazen-Williams pipe resistance is defined Savic and Walters (1997) as: 

(5) Pe

k

e

k

k
k Nk

dC

lc
r ,,2,1

21
K=

⋅

⋅
=  

lk: length of pipe k m 

Ck: Hazen-Williams coefficient of pipe k, dimensionless 

dk: diameter of pipe k mm 

Constants:   c := 1.215283E+10 

    e1 := 1.85 

   e2 := 4.87 

The constant c was determined from StruMap as described in Appendix VIII. 1.  

The relationships (4) and (5) can also be expressed in terms of the pipe conductance gk 

instead of the pipe resistance rk (Ulanicki et al (1996)): 



Maschler, T. and D.A. Savic, (1999) Simplification of Water Supply Network Models through 
Linearisation, Centre for Water Systems, Report No.99/01, School of Engineering, University of Exeter, 
Exeter, United Kingdom, p.119. 

16 

(6) Pkk
e

kkk NkgQ ,,2,1)(
1

1

1 K=⋅∆∆=∆
−

 

where the pipe conductance gk is 

P
e

kk Nkrg ,,2,11

1

K== −
 or 

Pe

k

e

ee

kk
k Nk

lc

dC
g ,,2,1

11

12

11
K=

⋅

⋅
= . 

II. 2. Improving the Simulation Time Problem  

II. 2. 1. The Simulation Time Problem 

The equations described in the previous Chapter define the equation system of a water 

network model. The equation system is solvable explicitly only, if the network has a 

tree structure. Then, the head at the nodes can be directly calculated in terms of flow. 

This will be discussed in chapter III. 2. 4.  

If a water network model has loops, it must be solved iteratively. Several solving 

approaches are described in Ellis and Simpson (1996). The number of equations used 

when solving water network model depends on the solver algorithm. HARP, the solver 

of StruMap (Structural Technologies Ltd. (1996)), is based on the freely available 

hydraulic network solver EPANET (Rossman (1994)), which uses a node-based model. 

A water network model is mainly represented there with the equations (2) and (4) 

above. Rossman (1994) writes that EPANET uses the “gradient algorithm” Todini and 

Pilati (1987) and sparse matrix techniques from George and Liu (1981). 

Water network models may be simulated static and dynamic. As only the data at some 

time points is necessary for water network scheduling planning, static, steady-state 

solutions are used in practice: a water network model is solved using a set of hourly 

time steps (snapshot s) over a period of 24 hours. This allows the prognosis of changing 

reservoir levels and the determination of convenient valve and pump schedules. 

Therefore, the solution time of a water network model depends on its size, the number 

of snapshots and the equation solver. Further, the optimisation method being used to 

determine the “cheapest” input vector requires numerous simulation runs. This will be 

explained using Genetic Algorithms as an example. 
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To determine an input vector, which minimises a given cost function, different 

approaches are used. The “Centre for Water Systems” at the University of Exeter uses 

“Genetic Algorithms” (De Schaetzen and Walters (1998)). Genetic Algorithms have the 

ability to deal easily with non-linear, discrete, multimodal and non-differentiable 

functions, for example the Heavyside Step Function (CRC Press and Weisstein (1996)). 

The Heavyside Step Function is used to describe the on-off scheduling of pumps and 

valves. 

Genetic Algorithms solve the network model for a range of different input vectors. Then 

they select the ones with the best cost function values and derive from these a new 

generation of input vectors which will be evaluated. This is done until the population of 

input vectors has converged. A further stop criterion is, for example, a fixed number of 

iterations or similar input vectors. Michalewicz (1992) gives a general introduction 

about Genetic Algorithms. 

Therefore, genetic algorithms require the following run time: 

solution time :=  number of generations    ×   

number of individuals per generation ×  

simulation time of the water network model . 

The simulation time for the Skipton water network model with approximately 1100 

nodes and 1300 pipes is ~ 0.25 sec. For 1,000 generations of 100 individuals, the 

genetic algorithm may require ~25,000 sec, a little bit less than 7 h. So reducing the 

simulation time whilst maintaining the model accuracy will significantly speed up the 

input vector optimisation process without touching the optimisation algorithm. 

II. 2. 2. Simplification Objectives 

As described above, the critical item when determining convenient input vectors for 

water networks is the simulation time. To cut down the simulation time, the solving 

time of the network can be reduced. Therefore, the number of network components and 

especially of the loops in the network must be minimised in a way which guarantees a 

solution accuracy as close as possible to that of the original water network model. 
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Further, the simplified model must react in the same way to changing boundary 

conditions (i.e.: demands) (Anderson and AL-Jamal (1995)). 

There are two main ways to simplify a network model: 

 1. Simplification of Network Model Components. 

The basic types of network components are maintained, but the individual 

network components are combined and replaced. An example for this would be 

to remove intermediate nodes from pipes in series. 

 2. Black Box Simplification. 

The network model is replaced with an abstract model, which provides the same 

functionality with less solution time. This can be done for the whole network or 

for parts of it. Examples are neural networks (Swiercz (1995)) or general 

models, whose parameters are fitted (Anderson and Al-Jamal (1995)). 

The first method allows the network model to be simplified directly using the network 

simulation software. The second simplification technique can only be carried out in 

programs, which allow the integration of the black box model.  

The following sections gives an overview of a number of simplification approaches 

described in literature. Firstly, approaches to simplifying water network models based 

on the model components will be presented; then approaches that replace the network 

model with black boxes will be described. 
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II. 2. 3. Simplification of Network Model Components 

Nodes

Parallel Pipes

Pipes in Series

Nodes with Similar Head

Tree Structures

Low Conductance Pipes

 

Figure 4. Simplification of Network Model Components. 
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II. 2. 3. a. Nodes 

Nodes, that are geographically closely  located can be unified to eliminate convergence 

problems of the solver
1
 (Martínez and García-Serra (1992)). Nodes are understood to be 

“close”, if the head loss between them is very low or in more abstract terms, the pipe 

resistance between them is very low. This is the same as unifying pipes in series 

(described below) which are of a very low pipe resistance. 

II. 2. 3. b. Parallel Pipes 

Pipes, which have the same start and end nodes, can be replaced by an equivalent one 

with an appropriate diameter and length (Martínez and García-Serra (1992)). The pipe 

conductance of the new pipe can be calculated by summing up the conductances of the 

old pipes Anderson and Al-Jamal (1995): 

(7)  2,1, oldoldnew ggg += . 

 Afterwards, the pipe diameter can be obtained using Equation (6) with an appropriate 

pipe length and Hazen-Williams coefficient. This is an exact substitution as long as the 

head loss for the pipe does not change, but it leads to some error otherwise. 

II. 2. 3. c. Series Pipes 

Two pipes, connected by a single node, can be replaced by one pipe (Martínez and 

García-Serra (1992)). The demand of the node which is removed has to be redistributed 

to the start and end node of the new pipe. The resistance of the new pipe can be 

calculated by summing up the old pipe resistances Anderson and Al-Jamal (1995): 

(8)  2,1, oldoldnew rrr += . 

Now, the new diameter can be calculated using equation (5) and a suitable pipe length 

and Hazen-Williams coefficient. As this method concatenates two parallel pipes, this is 

                                                 

1 Pipes with high resistance/ low conductance pose big problems when solving. They require far more iterations to meet the 

accuracy criterion of the solver than other pipes. 
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only an exact replacement as long as the head loss between the start and end nodes stays 

the same. 

The redistribution of the demand of the node, which is removed, will be discussed in 

Chapter III. 1. 1. d.  

II. 2. 3. d. Nodes with Similar Head 

Anderson and Al-Jamal (1995) write that a group of nodes with similar head can be 

reduced to a single node with the total demand of the node group. 

II. 2. 3. e. Tree Structures 

Tree structures in a network can be replaced by adding the summed demand of all nodes 

in the tree to the node, which connects this structure Martínez and García-Serra (1992). 

This will be described in detail in Chapter III. 2. 4.  below. 

II. 2. 3. f. Low Conductance Pipes 

Martínez and García-Serra (1992) emphasise that pipes below a certain diameter do not 

contribute significantly to the carrying capacity of a water network, so they can be 

neglected. They give as rule of thumb, that in small networks (with pipe diameters up to 

200-250mm), pipes with less than 80mm diameter are negligible, in large networks 

(with pipe diameters bigger than 800mm) pipes with less than 200mm can be 

eliminated. Swiercz (1995) describes the same procedure as “skeletonisation”. 

As the flow is the decision criterion for neglecting a pipe, it appears to be more exact to 

use the pipe resistance or the pipe conductance instead of the pipe diameter to decide. 

These terms reflect all the pipe attributes in the equations (5) and (6). Therefore, the 

pipe roughness with the Hazen-Williams coefficient and the pipe length will be taken 

into account, as well. 
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II. 2. 3. g. Single Input Subsystems 

 

Figure 5. A Water Network Model is split into Two Single Input Subsystems. 

A large water network model with multiple input points (sources and reservoirs) can be 

separated in multiple independent networks, when pipes, which are under the influence 

of two input points are being split Swarnee and Sharma (1990). This breaks the original 

network model down to a number of models corresponding to the number of input 

points. These models can be simulated with less computational effort because of their 

smaller size. 

II. 2. 4. Black Box Simplification 

The following approaches replace the network model partially or fully with a system, 

which provides the same function with less complexity. 

II. 2. 4. a. Static Simplification 

Basing on the relationships between electrical network models and water network 

models, Ulanicki et al (1996) present an approach to simplify latter models. The 

following table gives a brief overview of these similarities. 
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Table 3. Similarities between Electrical Network Models  

and Water Network Models. 

Electrical network models � water network models 

current I � flow Q 

voltage U � head H 

non-linear resistor � Pipe 

∑ = 0I  at a node, 

Kirchhoff’s Law I 

� ∑ = nod
qQ  at a node 

Continuity Equation 

∑ = 0U  for a loop, 

Kirchhoff’s Law II 

� ∑ = 0H  for a loop 

Energy Equation 

 

The approach is based on formulating the full non-linear model, linearising it around a 

given working point and reducing it with the Gaussian Elimination Algorithm. A non-

linear model with fewer components can then be retrieved. The case studies (Ulanicki et 

al (1996)) show that the largest relative errors in terms of heads are mostly less than 1% 

for water network models with up to 797 nodes, 1088 elements and 103 devices. The 

full algorithm will be described in detail in chapter III. 1. 1.  

This approach is very simple and fast and allows a direct physical interpretation: the 

resulting simplified model also consists of pipes and nodes. It is valid for a wide range 

of operating conditions, but shows slight errors when the working conditions are outside 

the vicinity of the linearisation point. 

II. 2. 4. b. Neural Network Approach 

Swiercz (1995) replaces the water network model with a neural network. Neural 

networks are trained with given input and output vectors to mimic the behaviour of the 

water network model. Swiercz’ example network contained 60 nodes, 124 elements and 

4 reservoirs. Depending of the complexity of the neural networks, the average relative 

error for the heads was below 2%, while the training covered 1800-7650 epochs 

(snapshots). Swiercz (1995) points out that neural networks require far less calculation 

time than their original water network models without a loss of accuracy. 

In addition to the approaches described above, Anderson and Al-Jamal (1995) use 

parameter-fitting to equalise the results of the simplified and the original network 

model. This is an additional step during the model simplification procedure to enhance 

the accuracy of the simplified model. 
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II. 3. Conclusions 

In this work, the static simplification method of Ulanicki et al (1996) was chosen for 

network simplification. It combines the advantage of providing an abstract model, 

which can be expressed with pipes and nodes with the ability to reduce the water 

network models to a minimum without significant accuracy loss. Combining nodes with 

similar head was not done in this work, as the heads of nodes may vary drastically over 

a period although they appear to be similar at a specific time. In addition, splitting 

networks with multiple sources into single input systems was not carried out here.  
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III — NETWORK SIMPLIFICATION 

This chapter describes the theory behind static simplification based on Ulanicki et al 

(1996) and illustrates that this method carries out a simplification based on network 

model components. In addition, the functioning of the method is shown by an example 

network model. Finally, details of the implementation, like an Activity-Diagram of the 

Algorithm, are discussed. 

III. 1. Theoretical Development  

In this section, the algorithm for static simplification will be described in detail. 

Afterwards, the treatment of network components will be discussed. 

III. 1. 1. The Algorithm for Static Simplification 

The strategy described here is based on the work by Ulanicki et al (1996). Algebraic 

examples are given in Section III. 2.  below. 

III. 1. 1. a. The Mathematical Water Network Model 

It is very convenient for algebraic manipulations to express the network model with a 

branch incidence matrix: 
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(9) nodqq
rr

=⋅Λ  Kirchhoff’s law I for nodes 

  Λ  branch incidence matrix 

  q
r

 vector of flows in the pipes 

  nodq
r

 demands in the nodes. 

This matrix has one row for each node and one column for each branch. Each column 

has exactly one entry “-1” in the row corresponding to the node, at which the water goes 

into the pipe and one entry “1” at the row corresponding to the node, at which the water 

leaves the pipe. All other entries are “0”. The matrix Λ  can be also used to determine 

the head loss in the pipes: 

(10) hh
T

rr
⋅Λ=∆  Kirchhoff’s law II 

  



















∆

∆

∆

=∆

PN

h
M

r
2

1

 vector of head losses 

  



















=

NNH

H

H

h
M

r
2

1

  vector of total heads in the nodes. 

The relationship between the head loss and the flow in the pipes can be expressed with 

the pipe component law using the Hazen-Williams coefficient (6): 

(11) 
















∆⋅∆⋅

∆⋅∆⋅

=∆=

)sign(

)sign(

)(
3

3

111

PPP N

e

NN

e

hhg

hhg

hQq M
r

 pipe component law 

  gm  conductance of the pipe m;  m=1(1)Np 

  1
1

:
1

3 −=
e

e  

The relationship uses the following definition of the signum function: 

 




<−

≥
=

0for 1

0for 1
)(

x

x
xsign . 
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The equations (9) - (11) describe the network model completely. With these equations, 

the mass balance for a node n can be expressed with 

(12) N

nod

nnmj

Nm

e

mnjmnjmnjn Nmnqhhg
nN

,,2,1,)sign( ),(),(),(),(,

,

3

K==∆∆Λ∑
∈

 

  j(n,m) branch j connecting nodes m and n; PNj ∈  

  nNN ,  number of nodes connected to node n. 

Inserting (10) in (11) and (11) in (9) leads to a compact expression for (12): 

(13) {
nod

h

T
qhQ
rr

r
=ΛΛ

∆

)( . 

This expression has one redundant equation as the sum of all demands nod

iq  is zero in 

the network model: 

(14) ∑
=

=
NN

n

nod

nq
1

0 . 

Hence, the simplification can only cover NN – 1 nodes. From now on, NN will represent 

the number of nodes covered by the simplification. 

III. 1. 1. b. The Linear Model 

Linearising (13) around the operating point ( )0,0 , nodqh
rr

 of the water network model 

leads to: 

(15) nodT

h

qh
hd

hdQ rr
r

r

r
δδ =⋅Λ

∆

∆
Λ

∆ 0

)(
 with the Jacobian 

 T

h
hd

hdQ
A Λ

∆

∆
Λ=

∆ 0

)(

r

r

r

  and 

 0
hhh
rrr

−=δ  and 

  0,nodnodnod qqq
rrr

−=δ  and 

00
hh

T
rr

⋅Λ=∆ , corresponding to Kirchhoff’s Law II (10). 

The matrix with the linearised pipe conductances is determined as follows: 
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(16) 
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e

j

h

hge
hd

hdQ

1

0

3

4

0

diag
)(

=
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This leads to the following form of the Jacobian matrix: 
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The Jacobian matrix is a NN NN ×  symmetric one. A non-diagonal entry on position (n, 

m) indicates a pipe between the nodes n and m. 

Ulanicki et al (1996) introduce the notion of the “linearised branch conductance”: 

(18) 
400

),(3),( ˆ~ e

mnmnjmnj hhgeg −=  j=1,2,…,NP, NNnm ∉, . 

This notion will be called “linearised pipe conductance” in this report. It reflects the 

pipe attributes such as diameter, length and Hazen-Williams coefficient and, in addition, 

the head loss in the pipe. It will be used to transform between the non-linear and linear 

network model. 

Ulanicki et al (1996) also introduce the notion of the “linearised node conductance”: 

(19) ∑
≠∈

=
nkNk

nkn

n

gg
,

,
~ˆ~  NNn ,,2,1 K= . 

The linearised node conductance is the sum of the linearised pipe conductances of the 

pipes which are connected to the node. 

This allows the presentation of the linearised model (15) as: 
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(20) 
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with the linearised branch conductances on the non-diagonal elements and the linearised 

node conductances on the diagonal elements. 

III. 1. 1. c.  Linear Model Reduction 

This linearised model (20) describes the changes of heads and flows at a default 

working point. The model can be reduced in the following way: the rows of the nodes 

that shall be removed have to be put in the first r row positions of the matrix A. 

Afterwards, the Gauss-elimination (Hammerlin and Hoffman (1991) (referenced by 

Ulanicki et al (1996))) has to be applied r times. 

This yields the reduced matrix A(r). A(r) has (NN - r) rows and columns. It is a sub-

matrix of A after applying the Gauss-elimination. Its range in A goes from position (r + 

1, r + 1) to position (NN, NN). 

The Gauss-elimination does the following: The pipes are restructured around the nodes, 

which are removed. The demand of a replaced node is redistributed between nodes 

connected to this node. This is done proportionally to the conductance of each branch. 

The conductances of the pipes are changed as well. 

A non-linear model can be recovered from the reduced linear model by reading the 

topology from the reduced network matrix A(r). Non-zero-entries indicate branches 

between nodes. 

Ulanicki et al (1996) introduce the new node-branch incidence matrix )(rΛ  with 

)(r

NN   number of nodes in the reduced model and 

)(r

PN   number of branches in the reduced model. 

The new linear model can be represented in a form equivalent to (15): 
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(21) 
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   is a )()( rr

NN
NN ×  diagonal matrix. 

)(

,
~ r

mng  is the new linear branch conductance between the nodes n and m and 
nodrq )(rδ is the 

new nodal demand vector. 

III. 1. 1. d. The Reduced Non-Linear Model 

This yields a new non-linear model: 

(22) nodrrTrrr qPhQ
rr

)()()()()( )( =ΛΛ   

where )( )()()( rTrr hQ
r

Λ  is the function for the new nonlinear branch law 

This model has the new branch conductance 

(23) )(

,

00

3

)(

,
~4 r

mn

e

mn

r

mn ghheg =−⋅ ,  ):(, )(
rNNnm N

r

N −=∈ . 

These steps wre done by Ulanicki et al (1996). 

III. 1. 1. e. Requirements 

To reduce a model, the following requirements are necessary: 

1. A full hydraulic network model. 

2. All values of h
r

 and nodq
r

 in the working point have to be known. 

3. The knowledge of which nodes shall be removed and which not. 

The vector nodq
r

 is known, because it is part of the input vector, while h
r

 can be 

obtained by solving the water network model at nodq
r

. As Ulanicki et al (1996)  give 

only the algorithm for static simplification, the third point has to be discussed in detail. 

This will be done in the following section. 
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III. 1. 2. Identification of the Simplification Range 

In this section, a method will be developed to separate the part of the model which can 

be simplified from the rest. This model part will be denoted “simplification range” from 

now on. The simplification range is the part of the full model, which can be replaced 

during simplification without changing the behaviour of the water network model. The 

“simplification range” — a “black box” — has with nodes as interfaces to the in- and 

output components of the water network model. 

Generally, it is not necessary to know all heads and flows in the system since only a 

subset of all system output is needed for the cost function. A simplified model with 

fewer details should of course have the same input vector, so valves and pumps, etc. 

shall be kept. To maintain their functionality, flows in selected pipes and heads at 

selected nodes shall not be changed by the simplification algorithm. 

Reservoir,

HH=100m

Demand Node,

qqnod=5 l/s

Pipe,

l=50m, d=100mm

C=100

Valve, opened

CF

CF

CF

CF:  Head/ Flow mon-

itored for Cost Function

 

Figure 6. Example Water Network Model with Trees, Loops, Parallel Pipes, a Fixed 

Head Reservoir and an Open Valve. 
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The Water Network Model in Figure 6 will be used as an example to identify the 

simplification range. It contains a fixed head reservoir, an opened valve, 12 demand 

nodes and 17 pipes. Therefore, the number of loops is 4 (see equation (1)). All demand 

nodes have a demand of 5 l/s. The reservoir level is fixed at 100m. All pipes have a 

length of 50m, a diameter of 100mm and a Hazen-Williams coefficient of C=100 (see 

i.e. Chadwick and Morfett (1993)). The head at two nodes (those ones marked with 

“CF”
2
 in Figure 6) and the flow in one pipe (marked with “CF”, as well) are inputs for a 

cost function. 

The aim of the identification is to find all nodes which form the boundary of the 

simplification range. This boundary depends on the input and output components of the 

water network model. Input components are all valves, reservoirs and sources. Output 

components are the pipes, whose flow is used for the cost function and the nodes, whose 

heads are input to the cost function. 

The simplification range without these interface components is drawn in Figure 7. 

                                                 

2 “CF” stands for cost function. 
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Reservoir,

HH=100m

Demand Node,

qqnod=5 l/s

Pipe,

l=50m, d=100mm

C=100

Valve, opened

CF

CF

CF

CF:  Head/ Flow mon-

itored for Cost Function
Simplification Range

 

Figure 7. The Example Network with the Interface Components outside the 

Simplification Range. 

So far, this boundary is not clearly defined. To do this, two new network component 

attributes will be introduced: 

� “Non-Removable”  

Network model nodes with this attribute have to stay during simplification. 

Their attributes may be changed.  

Therefore, they form the boundary of the simplification range. 

� “Untouchable” 

Network model components with this attribute have to stay during 

simplification, but their attributes are not permitted to change.  

Hence, they have to stay outside the simplification range. 

Input Components have to stay unchanged during simplification. Their attributes are not 

allowed to change, for example to avoid a situation where a valve could get a demand 

associated with it. Hence, the valves have to be marked with as “untouchable”. Output 

components are nodes, where the head is needed for the cost function. Output pipes are 
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pipes, whose flow is needed for the cost function. Output nodes have to stay unchanged 

during simplification, but one of their attributes, the demand, is allowed to change 

because the pressure at the node should stay the same after simplification. Therefore, 

they have to be marked as “non-removable”. The flow in output pipes would be 

changed, when the pipe conductance is varied, hence they have to be marked as 

“untouchable”. The following table gives a brief overview over the assignment of 

attributes to network components. This has to be done manually. 

Table 4. Attributes of Interface Components. 

Water Network 
Model Component 

Signal Flow 
Direction 

Attribute 

Source Untouchable 

Reservoir Untouchable 

Valve Untouchable 

Pump 

I
n
p
u
t
 

Untouchable 

Node Non-Removable 

Pipe O
u
t
p
u
t
 

Untouchable 

 

The static simplification algorithm in this work is based on nodes. Therefore, the 

identification algorithm must clearly identify the nodes, which shall stay and those, 

which can be simplified. All nodes, which are “non-removable”, will stay during the 

simplification. However, the attribute “untouchable” can be assigned to nodes and 

pipes. If a node is “untouchable”, its attributes have to be protected from being changed. 

This can be achieved by protecting the connections, i.e. the pipes connected to the node. 

So the pipes which are connected to an “untouchable” node have to be marked as 

“untouchable” as well. Similarly, preventing their nodes from being removed will 

protect “untouchable” pipes. Hence, the start and the end node of a pipe have to be 

marked as “non-removable”. 

The simplification range identification algorithm will have to perform the following 

preparation steps: 

 1. Mark all pipes, which are connected to input components  

(nodes with the attribute “untouchable”) as “untouchable” as well. 

 2. Mark the start and end nodes of “untouchable” pipes as “non-removable”. 



Maschler, T. and D.A. Savic, (1999) Simplification of Water Supply Network Models through 
Linearisation, Centre for Water Systems, Report No.99/01, School of Engineering, University of Exeter, 
Exeter, United Kingdom, p.119. 

35 

After performing these steps, the boundary of the simplification range is defined by the 

non-removable nodes. This is illustrated in Figure 8. 

Reservoir,

HH=100m

Demand Node,

qqnod=5 l/s

Pipe,

l=50m, d=100mm

C=100

Valve, opened

CF

CF

CF

CF:  Head/ Flow mon-

itored for Cost Function

Simplification Range

„Non-Removable“

Demand Node

 

Figure 8. The Network Model with the Simplification Boundary after performing the 

Identification Algorithm. 

Output Pipes may eventually have got assigned the linear pipe conductance of other 

pipes during the simplification process. This may be corrected by parallel pipes. 

The steps of the identification algorithm above guarantee that no demand is assigned to 

valves, pumps, sources and reservoirs and that new pipes are not connected to them. 

III. 1. 3.  Pipe Attributes 

This part explains how the pipe attribute values like the length, the diameter or the 

Hazen-Williams coefficient will be assigned when the simplification algorithm creates 

new pipes.  
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A pipe has to transport water from one node to another according to its conductance. 

When the simplified water network model is constructed from the reduced branch 

incidence matrix A
(r)

, the pipe attributes will be specified as follows: 

� The new pipe length is the geographic distance between the start and the end 

node. 

� The Hazen-Williams coefficient is set to 100. 

� The diameter of a pipe k will be calculated for the new pipes during 

simplification using the following relationship: 

(24) )(

1

,,2,1

2

1

1

r

e

e

k

k

e

k
k P

Nk
C

lcg
d K=







 ⋅⋅
= . 

The equation above is based on the formula for the non-linear pipe conductance 

(equation (6)). 

In remaining pipes, the original Hazen-Williams coefficient, the diameter and the length 

cannot be kept since in the simplified model, these pipes may represent a 

conglomeration of several others. 

III. 2. Algebraic Simplification of Network Model Components 

This section gives some brief examples of the static simplification based on component-

by-component simplification approaches. 
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III. 2. 1. Nodes 

N
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N
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N
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N
6

N
7

N
2

N
1

P
3

P
2

P
1

P
4

P
5

P
6

 

Figure 9. Node Replacement. 

The water network model in Figure 9 has sources in the nodes N3, N4 and N5, therefore 

their demand is negative. Water flows from N3 and N4 to N2, from N2 and N5 to N1, 

from N1 to N6 and from N6 to N7. The network has 6 pipes and 7 nodes. Node N1 will 

be removed from the water network model. 

III. 2. 1. a. Mathematics 

The network model can be represented using the energy and the continuity equation and 

the pipe component law as described on page 26. The continuity equation for nodes: 

(25) nodqq
rr

=⋅Λ  

























−

−

−

−

−

−

=Λ

110000

001000

000010

000100

000111

011001

6

5

4

3

2

1

654321

N

N

N

N

N

N

pppppp

; 

















=

6

1

q

q

q M
r

; 

















=
nod

nod

nod

q

q

q

6

1

M
r

. 

The row for N7 was excluded because of the dependency  
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(26) ∑
−

=

=
1

1

7

NN

i

nod

i

nod
qq  with NN=7. 

The energy equation gives the relationship between the total head at the nodes and the 

head loss in the pipes: 

(27) hh
T
rr

Λ=∆  

















∆

∆

=∆

6

1

h

h

h M
r

; 

















=

6

1

h

h

h M
r

. 

The pipe component law gives the relationship between the head loss and the flow in 

the pipes: 

(28) 
















∆∆

∆∆

=∆=

)sign(

)sign(

)(

666

111

3

3

hhg

hhg

hQq
e

e

M
vr

. 

Linearisation of (26) with (28) around the working point ( )0,0 , nodqh
rr

 leads to the 

linearised water network model 

(29) nod

A

T

h

qh
hd

hQd rr

44 344 21

r

rr

r
δδ =Λ

∆

∆
Λ

0

)(
 with 

0
hhh
rrr

−=δ   and 

0,nodnod qqq
rrr

−=δ . 

The JacobianA of the linearised model requires the linearised pipe conductance, 

equation (18): 



Maschler, T. and D.A. Savic, (1999) Simplification of Water Supply Network Models through 
Linearisation, Centre for Water Systems, Report No.99/01, School of Engineering, University of Exeter, 
Exeter, United Kingdom, p.119. 

39 

(30) 



















=





















∆

∆

∆

=
∆

∆

6

2

1

663

223

113

~00

0

~0

00~
00

0

0

00

)(

4

4

4

0

g

g

g

hge

hge

hge

hd

hQd

e

e

e

h

L

OOM

MO

L

L

OOM

MO

L

r

rr

r

 . 

This yields A from equation (25) as 

(31) 



























+−

−

−

−

−−++−

−−−++

=

655

44

22

33

233211

541541

~~0000~
0~000~
00~0~0

000~~0

00~~~~~~

~~00~~~~

ggg

gg

gg

gg

gggggg

gggggg

A . 

The linearised network model: 

(32)    nodqhA
rr

δδ =  

nod
qh

ggg

gg

gg

gg

gggggg

gggggg

rr
δδ =



























+−

−

−

−

−−++−

−−−++

655

44

22

33

233211

541541

~~0000~
0~000~
00~0~0

000~~0

00~~~~~~

~~00~~~~

. 

It can be seen that the matrix is symmetric with a dominant diagonal. The diagonal 

elements are the negative sum of all other row or column entries. 

Now the node N1 will be removed by Gauss-Elimination. This means, the first row and 

column of the equation system (32) will be eliminated. So the matrix part in the bottom 

right of (32) will remain. With  

(33) 541
~~~ gggf ++=  

 this solving against 1hδ  results to: 
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(34)  
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with )(rA and nodrq ),(rδ as marked above. The properties of )(rA are summarised in 

Ulanicki et al (1996). 

Now a non-linear model is recovered from the reduced model (34). Ulanicki et al (1996)  

writes, that a non-zero entry at a position (i,j) in the matrix )(rA  indicates a pipe 

between the nodes Ni and Nj. The new linear pipe conductance for this pipe is 

)(

,

)(

,
~ r

ji

r

ji Ag −= . The new non-linear pipe conductance )(

,
~ r

jig  can be calculated using the 

relation 

(35) )(

,

00

3

)(

,
~4 r

ji

e

ji

r

ji ghheg =−⋅⋅ , corresponding to (18). 

The following new network topology corresponds to )(rA  (equation (34)): 
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Figure 10. The new Network Structure after removing N1. 
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III. 2. 1. b. Interpretation 

Removing of Node N1 resulted in the new pipes p8 between N’2 and N’5, p9 between N’5 

and N’6 and p10 between N’2 and N’6. The nodal demands in the Nodes N’2, N’5 and N’6 

were changed.  

So the star pipe structure around N1 was exchanged with a triangle pipe structure 

between N’2, N’5 and N’6. The simplified model has 4 pipes and 5 nodes. 

III. 2. 2. Pipes in Series 

Now, two pipes in series will be unified. In Figure 11, the source is N5. The flow 

direction is from N5 through N3, N1 and N2 to N4. 
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Figure 11. Network Model of Pipes in Series. 

The node N1 will be removed from the system. Therefore, the pipes P1 and P2 will be 

unified. 
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III. 2. 2. a. Mathematics 

As the strategy of static simplification was described in detail in the last section, from 

now on only significant steps and results will be explained. 

The branch incidence matrix Λ : 

(36) 


















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41

N

N

pp

M

M
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. 

The row of node 5 was excluded because of the dependency, equation (14) above. 

The Jacobian matrix A evaluates to 

(37) 
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Removing N1 leads with 21
~~ ggf += to 

(38) 
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The following new network topology can be read from A
(r)

 (38): 
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Figure 12. Network Model of Pipes in Series, with one Node removed. 

III. 2. 2. b. Interpretation 

After removing the node N1, the new pipe P5 gets the linear conductance 
f

gg
g 21

5

~~
~ ⋅

= . 

P5 is the replaces P1 and P2. The demand of N1 is redistributed to the nodes N’2 and N’3. 

III. 2. 3. Parallel Pipes 

Now, two parallel pipes will be unified. The source in the network model is N4, from 

there, the water flows to N1 and N5. From N1, the flow passes through two parallel pipes 

to N2; from N2, the flow goes to N3. 
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Figure 13. Network Model with Parallel Pipes. 

III. 2. 3. a. Mathematics 

The node branch incidence matrix Λ : 

(39) 
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The demand of N5 will be calculated by the dependcency for the demand, similar to 

equation (14). P1 and P2 have the same entries in Λ . This denotes from their identical 

start and end nodes. 

The Jacobian matrix A results to: 

(40) 
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The linear pipe conductances of P1 and P2 were simply added in A, so no Gaussian 

Elimination is needed. Therefore, the new network topology can be read directly from 

the Jacobian matrix A: 
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Figure 14. Network Model with Unified Parallel Pipes. 

III. 2. 3. b. Interpretation 

The linear pipe conductances 1
~g  and 2

~g  are added when the Jacobian matrix of the 

model is calculated. The single pipe P6 linking N1 and N2 has the linear conductance 

216
~~~ ggg += . 

III. 2. 4. Trees 

In this section, a tree in a network model will be removed with the static simplification 

method. The source in the network model illustrated below is the node N4. From there, 

the flow goes to N3 and from N3 to N5 and to N1 via N2. The network model has 5 nodes 

and 4 pipes. The pipes P1 and P2, which form the tree, will be removed. 
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Figure 15. A Water Network Model with a Tree. 

There are two different methods to do this: 

� adding the demands directly 

� with static simplification 

Firstly, the algorithm for adding the demands directly will be explained. 

III. 2. 4. a. Adding the Demands 

The head in N1 is a function of the head in N2 and the flow in P1, which equals to the 

demand in N1 (see equation (2)): 

(41) ( )nodqhhh 1211 ,=  . 

The head H2 is a function of the head in N3 and the flow through P2, equal to 

nodnod qq 21 + : 

(42) ( )nodnod
qqhhh 21322 , += . 

The head h3 in N3 does not depend on the head of N2. The only influence from N2 and 

N1 results from the demands nodq1  and nodq2 : 

(43) ( )nodnodnod
qqqhh 32133 ..., ++= . 

So, the demands of N1 and N2 can be added to the demand of N3: 
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(44) nodnodnodnewnod
qqqq 321

,

3 ++=   

without loosing accuracy. Now, N1 and N2 can be deleted. 

The network topology after removing the branch: 
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Figure 16. Water Network Model with removed Tree. 

III. 2. 4. b. Static Simplification 

In this section, the tree of the network model in Figure 15 will be removed with the 

static simplification algorithm. 

The node branch incidence matrix Λ evaluates to: 

(45) 
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The row for N5 is excluded from Λ  because of the dependcency (14). 

The Jacobian matrix A results to: 

(46) 
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Now, the nodes N1 and N2 will be removed. Hence, the Jacobian matrix A
(r)

 of the 

reduced model is:  

(47) 








−

−+
=

33
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~~

~~~

gg

ggg
A

r . 
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The reduced demand vector evaluates to: 

(48) 






 ++
=

nod

nodnodnod

rnod

q

qqq
q

4

321)(,r
. 

As shown above, the demands are added without being weighting with the pipe 

conductances to the start node of the tree, here N3. The network structure, which can be 

derived from the Jacobian matrix of the reduced model (47), is identical to the one in 

Figure 16. 

III. 2. 5. Low Conductance Pipes 

Elimination of low conductance pipes is not directly possible with the static 

simplification approach that is carried out here, because the approach is based on 

relinking selected nodes. So, these pipes will be simply deleted from the network 

model. 

Low conductance pipes can be removed from the network model 

� before linearising as well as 

� after removing nodes with the Gaussian elimination procedure. 

Static simplification splits the connections of a node to connections between the nodes, 

to which it is coupled. These new pipes conductances between the remaining nodes may 

be much lower than the lowest pipe conductance in the original network. Therefore, the 

conductance of a low conductance pipe might increase as well, when the connections 

around a node are redistributed. Hence, it makes more sense to delete low conductance 

pipes after the simplification, so as much as possible from the structure of the original 

network will remain and new low conductance pipes will be eliminated. 

Low flow in a pipe is not only the consequence of a low pipe conductance, but also of a 

big head loss. Therefore, the head loss should be regarded as well. The linearised pipe 

conductance ig~  reflects the head loss, so it will be the classification variable in this 

work, instead of the non-linear pipe conductance ig~ . 

With the linearised pipe conductance of the static simplification algorithm, there are two 

possible decision criteria to identify low conductance pipes: 
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A fixed absolute linear pipe conductance level for the whole water network model. 

A linear pipe conductance level relative to the smallest linearised node conductance of 

start and end nodes of the pipes. 

Both classification criteria were implemented in this work. They were integrated in the 

program module, which links the remaining nodes after simplifying. The second 

decision criterion did sometimes not remove all pipes, which caused solver errors. 

These solver errors appeared unpredictable in the simulations and were sometimes half 

of the order of the available head in the nodes. Further, the normal errors caused by this 

criterion were generally much higher than the ones of the first classification criterion. 

So the fixed absolute linear pipe conductance level as decision criterion for low 

conductance pipes is much better than the relative one. 

III. 3. Implementation 

In this section, the modelling environment will be briefly explained. Afterwards, the 

activities performed in the algorithm to identify the simplification range and in the static 

simplification algorithm will be discussed. 

III. 3. 1. Modelling Environment 

The application for the static simplification is called “SpeedUp” in this report. It is 

integrated with the geographic information system “StruMap” (Structural Technologies 

LTD. (1996)). StruMap and SpeedUp communicate via the application programmer’s 

interface, “API”, of StruMap via an interface in C++. SpeedUp was developed with the 

C++ Builder (i.e. Calvert (1997)). The C++ Builder compiles the source code of 

SpeedUp and the interface to the API of StruMap. Further, for representing matrices in 

SpeedUp, a matrix library is used. 
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Program Code
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StruMap

C++ Builder

 

Figure 17. The Modelling Environment. 

The parts of the modelling environment will be briefly explained now. 

III. 3. 1. a. StruMap 

The Centre for Water Systems of the School of Engineering and Computer Science uses 

the modelling environment “StruMap” from “Structural Technologies Limited”. It 

provides an environment to work with data contained in a map: it is a geographic 

information system. To simulate water networks, StruMap comes with a solver for 

water network models, HARP. Attributes of Map items can be manipulated with a built-

in expression evaluator, an interpreter language programming interface. StruMap comes 

as a set of library files. The functions in them are accessible via an application 

programmer’s interface, “API”, to C. So external programmers can add custom 

functions to StruMap. The API is described in Structural Technologies (1996). The API 

itself is written in C. The StruMap version, which is used for this work, is “StruMap 

2000 Release 1.3 990104” for Microsoft® Windows 95™. 
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III. 3. 1. b. C++ Interface to StruMap 

Roger Atkinson of the Centre of Water Systems has written an excellent interface class 

for the StruMap API. This class encapsulates the functions of the API as methods. It 

was extended in this work. 

III. 3. 1. c. Matrix Library 

To represent the Jacobian matrix A in the program, the data structures of Press et al 

(1992) were used. The used functions allocate memory for the matrix and free it. 

III. 3. 1. d. Programming Environment 

The algorithms for this work were coded in C++ with the “Borland C++ Builder 

Professional Version 3.0 (Build 3.70)“ from Borland International. As C++ dialect, the 

Borland version was used. It provides a range of functions, classes and methods 

specifically designed for Microsoft® Windows. For documentation about the C++ 

Builder, see Calvert (1997). 

III. 3. 2. The Algorithm 

This section illustrates the algorithms for the simplification preparation and static 

simplification, which were developed in this work. 

III. 3. 2. a. Simplification Preparation 

Figure 18 shows the activity diagram for the simplification preparation. The 

simplification preparation consists of three main sections: the deletion of closed valves, 

the protection of untouchable nodes with untouchable pipes and the following 

protection of untouchable pipes with non-removable nodes. 
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Is there a closed valve in 
the model?

Delete the pipes 
of the closed 

valve.

Delete the 
closed valve.

Mark all its pipes 
as 

non-touchable.

Is there a non-touchable 
node with not yet marked 
pipes?

Yes No

Yes No

Mark all its 
nodes as 

non-removable.

Is there a non-touchable 
pipe with not yet marked 
nodes?

Yes No

Start

Stop

 

Figure 18. Activity Diagram for the Simplification Preparation. 
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The simplification preparation will delete closed valves, because there is no flow 

through them and therefore no headloss in their pipes. Pipes without headloss have a 

zero linear pipe conductance (see equation (18) above). Pipes with a zero linear pipe 

conductance cannot represent a link in the Jacobian matrix A, as a zero entry in A 

denotes no connection between the nodes. So network components without flow will be 

excluded from simplification. 

The protection of untouchable nodes and afterwards the protection of untouchable pipes 

is carried out as described in section III. 1. 2.  above. 

III. 3. 2. b. Static Simplification 

The activity diagram for the static simplification algorithm is plotted in Figure 20 and 

Figure 21 below.  

Several activities are independent from each other, so they can be carried out in parallel. 

These activities are placed between two horizontal black bars. 

Firstly, a list of all nodes of the water network model has to be made. All non-

removable nodes, which will remain after simplifying, are put at the end of the list. This 

is advantageous, because the rows of the Jacobian matrix A will then not need to be 

sorted. Also, the node index for the rows and columns of A will be the same. 

Likewise, a list of all pipes is required. Their start and end nodes need to be identified 

and their linear pipe conductance needs to be calculated as well. To bypass possible 

flow errors of the solver, the linear pipe conductance is not calculated in terms of flow 

and head loss, but in terms of the pipe attributes length, diameter, Hazen-Williams 

coefficient and head loss. 

The Jacobian matrix needs to be initialised with a size of )1()1( −×− NN NN , because 

of the dependcency for the demands as explained in III. 1. 1. a. on page 25. All matrix 

elements have to be initialised with zero. 

Now, the linear pipe conductances can be placed in the matrix A. This is done by 

substracting them from their matrix elements: 
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(49) mnmnmn gAA ,,,
~: −=  and 

mnnmnm gAA ,,,
~: −=  with NNmn ∈, . 

Thereafter, the linear node conductances, which form the diagonal band of the matrix, 

can be calculated. This can be done with equation (19): 

∑
≠∈

=
nkNk

nkn

n

gg
,

,
~ˆ~   NNn )1(1= . 

Before the Gaussian elimination can be performed, the demand vector has to be built 

according to the node index for the matrix A.  

Now, the Gaussian elimination can be applied on the Jacobian matrix A and the demand 

vector. The Gaussian elimination was implemented in this work as follows: 

 
// SIMPLIFY: Gauss-Elimination ======================================== 

for (int i=0; i< numNodesToRemove; i++) { 

// iterate through all remaining rows, jacii !=0 for all rows 

for (int j=i+1; j<=jac_size; j++) 

     // is there something to do in the current row? 

     if (jacji != 0) { 

            double mult= -jacji / jacii; 

            // mult is a multiplication constant, which is used at least 

            // three times 

            jacji = 0; 

            // iterate through all columns 

            for (int k=i+1; k<=jac_size; k++) 

                 // is there something to do in the current column? 

                 if (jacik != 0) { 

                     // add (mult * jacik) to jacjk =============== 

                     jacjk += mult * jacik; 

                    }; 

                 // the following lines allocate the demand objects in memory 

                 demandType demand  = (demandType)demandList->Itemsi; 

                 demandType demand1 = (demandType)demandList->Itemsj; 

                 // add the demands ========================================= 

                 demand1->addDemand(demand, mult); 

                }; // end of row iteration 

     }; // end of column iteration 

 

The Jacobian matrix A is in the code above simply called jac. i is the index of the 

current diagonal element and j is the index for the actual row in jac. k is an index for 

the column, in which additions are carried out. The syntax of C++ is described in 

Calvert (1997). 



Maschler, T. and D.A. Savic, (1999) Simplification of Water Supply Network Models through 
Linearisation, Centre for Water Systems, Report No.99/01, School of Engineering, University of Exeter, 
Exeter, United Kingdom, p.119. 

55 



























−−

↓

→

=

M

LL

MML

LM

O

]][[]][[0

0

]][[]][[

]1][1[

kjjacijjac

kijaciijac

iijac

j

k

A  

Figure 19. Structure of the Jacobian matrix A. 

As the matrix A is a sparse one, the algorithm always tests firstly, if there is something 

to do: when jac[j][i] is zero, the algorithm ignores this row, because there is nothing 

to eliminate. If jac[i][k] is zero, the algorithm ignores the column k. The solving 

algorithm was not further optimised, because the running time spent with Gaussian 

elimination is very small compared to the hard disk access time, which is needed to 

write the changed demand vectors. 

After the Gaussian elimination is finished, all pipes, except of the untouchable ones are 

dispensable and can be deleted.  

Now, the untouchable pipes need to be removed from the matrix A. This is done by 

adding their linear pipe conductance to the corresponding matrix position in A: 

(50) mnmnmn gAA ,,,
~: +=  and 

mnnmnm gAA ,,,
~: +=  with NNmn ∈, . 

If the matrix element mnA ,  is still lower than zero, an additional pipe parallel to the 

untouchable one will be inserted automatically later on to correct the flow. 

Now, all nodes, except of the non-removable ones can be deleted, as they are no longer 

required. The demand of the non-removable nodes can be written back. 
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Figure 20. Part 1 of Activity Diagram for the Static Simplification. 

Finally, the remaining nodes need to be reconnected with the pipe structure in A
(r)

. A
(r)

 is 

a submatrix in A from the position )1()1( +×+ rr to )1()1( −×− NN NN . If there is a 

non-zero linear pipe conductance entry in A at the position (m, n), which meets the 

writeback criteria, a pipe need to be inserted in the reduced model between the node m 

and n. There are two writeback criteria: 
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Relative writeback criterion. 

The linear pipe conductance An,m is bigger than its lowest linear node conductance 

multiplied by a factor rfact: 

(51) ),min( ,,, mmnnmn AArfactA ⋅>  )1()1(, −+∈ NNrmn K . 

Absolute writeback criterion. 

The linear pipe conductance An,m  is bigger than the lowest linear pipe conductance of 

the original network model multiplied by a factor afact: 

(52) })min({ ,, jimn AafactA ⋅>  )1()1(, −+∈ NNrmn K   and 

   )1(,,2,1 −= NNi K   and 

   ij ,,2,1 K= . 

The lowest linear pipe conductance of the original network model was chosen as a 

scale. This allows a comparison relative to the linear pipe conductance of the 

original network model. 

After simplification, some statistics are displayed to compare the simplified with the 

original network model. 
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Figure 21. Part 2 of Activity Diagram for the Static Simplification. 
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III. 4. Example 

In this section, the example network from above with the identified simplification 

boundary (Figure 8, page 35) in Chapter III. 1. 2. will be simplified with the static 

simplification algorithm. Low conductance pipes will not be eliminated, as the main 

intention of the example is to illustrate static simplification. 

III. 4. 1. Procedure 

Reservoir,

HH=100m

Demand Node,

qqnod=5 l/s

Pipe,

l=50m, d=100mm

C=100

Valve, opened

CF

CF

CF

CF:  Head/ Flow mon-

itored for Cost Function

Simplification Range

„Non-Removable“

Demand Node

A, B

CC

DD

EE

FF

 

Figure 22. The Example Network with marked Simplification Areas. 

In this network model, the static simplification will carry out the following 

simplification steps: 

Table 5. Simplifications Steps in the Example Network. 

Simplification Step Marked Area in Figure 22 above 

Unification of Series Pipes A 

Deletion of a Tree Structure B 

Unification of Parallel Pipes C 

Node Replacement D, E, F 
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The simplification areas of these steps are illustrated in Figure 22. 

The resulting network is shown in Figure 23. The static simplification replaces the 

network structures in the area A, B, C and F with one direct pipe. The demand of the 

removed nodes is added to the start and end node of this pipe. The star structures in the 

areas D and E are replaced with two triangle structures. The demand of the removed 

nodes is redistributed to the 4 corner nodes of the triangle structures. 

Reservoir,

HH=100m

Pipe,

C=100

Valve, opened

CF

CF

CF

CF:  Head/ Flow mon-

itored for Cost Function

Simplification Range

„Non-Removable“

Demand Node

 

Figure 23. The simplified example network. 

The simplified network model has 12 pipes and 9 nodes. Its number of loops is 4. The 

original network model has 17 pipes and 14 nodes. So the simplification will reduce the 

number of nodes to 9 and the number of pipes to 12, but the number of loops will stay 

the same. 
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III. 4. 2. Program Test 

As a test, the simplification of the example network will be carried out with the static 

simplification algorithm in StruMap. 

The screenshot below shows the heads and flows in the example water network model. 

A negative flow in a pipe indicates that the end node of a pipe has a higher head than its 

start node. 

 

Figure 24. Screenshot of the Original Example Network
3
.  

III. 4. 2. a. Preparations 

The simplification preparation identifies the boundary of the simplification area. Its 

output: 

 
SIMPLIFICATION PREPARATION 

 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   14 non-removable: 2 

Pipes:   17 

Loops:   4 

                                                 

3 The numbers without variable name and unit are the flows l/s. 
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N. of NW4 Components: 31 

The pipes represent 18 %  of all possible links. 

The loops represent 50 o/oo of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   14 non-removable: 9 

Pipes:   17 

Loops:   4 

N. of NW Components: 31 

The pipes represent 18 %  of all possible links. 

The loops represent 50 o/oo of all possible loops. 
 

The network had before the simplification preparation only 2 non-removable nodes, 

whose head is output for the cost function. After the preparation, it has 9 non-removable 

nodes. Untouchable nodes are included in this number. 

III. 4. 2. b. Simplification 

Now the example network model is solved at the working point and the calculated 

heads and flows are assigned to the network model components. Afterwards, the 

network model is simplified. The output of the static simplification algorithm: 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 13x13 . 

 

Reading pipes back. 

0 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   14 non-removable: 9 

Pipes:   17 

Loops:   4 

N. of NW Components: 31 

The pipes represent 18 %  of all possible links. 

The loops represent 50 o/oo of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   9 non-removable: 9 

                                                 

4 “NW” stands for network. 
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Pipes:   12 

Loops:   4 

N. of NW Components: 21 

The pipes represent 32 %  of all possible links. 

The loops represent 137 o/oo of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  9  14  -35 % 

Pipes:  12  17  -29 % 

Loops:  4  4  0 % 

NW Components: 21  31  -32 % 

The Jacobian matrix A has the dimensions 1313× . The number of nodes after 

simplification is nine, so only the non-removable nodes have stayed. The new water 

network model has 5 pipes less than the original one. The number of loops has not 

changed — there are still 4 loops. These results are the same as predicted in the section 

above. 

 

Figure 25. The Simplified Example Network
5
. 

The structure of the simplified network model in Figure 25 is similar to the proposed 

one in Figure 23. The heads in all the nodes are the same than the ones in the original 

                                                 

5 The black point in the bottom left edge in the screenshot is the cursor. 
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network model in Figure 24 above. The flows in the untouchable pipes have stayed the 

same as well. 

III. 5. Summary 

This chapter introduced the static simplification algorithm of Ulanicki et al (1996) and 

showed, that the network model component based simplification approaches node 

unification, parallel and series pipes unification and tree elimination are carried out by 

the static simplification algorithm.  

The static simplification algorithm was enhanced with two methods to eliminate low 

conductance pipes after simplifying the network model. As well, a method was 

presented to identify the simplification range in a network model. These are the main 

extensions of Ulanicki et al (1996). 

Then, the algorithm for the program was presented in form of activity diagrams. Finally, 

a simplification example was given with the static simplification algorithm in this work. 
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IV — CASE STUDIES 

This chapter describes the simplification procedure and the results for two large water 

network models. The model simplifications will be carried out for several cases with the 

absolute and the relative writeback criterion. Further, the solving time of the original 

water network models and the simplified ones will be benchmarked. 

IV. 1. Skipton Water Network Model 

IV. 1. 1. Brief Description 

Skipton is a rural town situated in North Yorkshire, United Kingdom. Yorkshire is an 

English shire next to the boundary of Scotland. Skipton is situated on the south 

boundary of the Yorkshire Dales, approximately 35km north-west of Leeds. 
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Figure 26. Skipton. 

The Skipton water supply network model consists of about 1000 nodes and 

approximately 1300 pipes. The number of loops is roughly 200. A screenshot of the 

Skipton water network model can be found in chapter II. 1. 1.  on page 11. 

The network contains the following special network components: 

� 2 “Variable Head Reservoirs”  (StruMap Property “R_VHR”). 

� 1 “Floating Valve”   (StruMap Property “V_FL1”). 

� 42 “Motorised Throttling Valves”  (StruMap Property “V_MTV”). 

36 of them are totally closed and six are totally opened. 

For a cost function, the flow in some pipes, as well as the heads of some nodes, will be 

chosen. As this report covers only the simplification algorithm to minimise the 

simulation time, the network components above will be chosen randomly. 

IV. 1. 2. Preparations 

All special network such as reservoirs, valves and sources were marked as 

“untouchable”, as well as those pipes, whose flow will be used in the cost function: pipe 

2146 and 1862. The nodes for the cost function were marked as “non-removable”: node 

723, 40 and 924. The number corresponds to their attribute “UID” in StruMap. 
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Now the simplification preparation routine was started. Its output: 

 

 SIMPLIFICATION PREPARATION 

 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   1091 non-removable: 3 

Pipes:   1295 

Loops:   205 

N. of NW Components: 2386 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   1091 non-removable: 134 

Pipes:   1295 

Loops:   205 

N. of NW Components: 2386 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

The number of non-removable nodes increases from 3 to 134 as the simplification area 

is identified. This high number denotes of the numerous valves in the network model. 

After the simplification preparation, the network was solved for a snapshot at 8 o’clock 

and the heads and flows were imported as the linearisation point for the network. The 

network was saved and SpeedUp restarted. 

IV. 1. 3. Simplification 

The simplification procedure was run for the following cases: 

 1. without writeback criterion 

Three times with the following parameters with the relative writeback criterion: 

 2.  0.00001 

 3. 0.0001 

 4. 0.0002 

And four times with the absolute writeback criterion: 
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 5. 0.956 

 6. 2 

 7. 3 

 8. 10 

The output of the static simplification routine can be found in the appendix, chapter 

VIII. 4. , which starts on page 106. 

Depending on the level of the writeback criterion, the simplification procedure reduces 

the number of network components differently: 

Table 6. Comparison of the Number of Network Components. 

Case Nodes Pipes Loops 
NW 
Components 

Pipes/  

possible links 
loops/ 
possible loops 

Orig. NW 1091 1295 205 2386 0 % 0 ‰ 

1 134 409 276 543 9 % 68 ‰  

2 134 310 177 444 7 % 44 ‰  

3 134 284 151 418 6 % 37 ‰  

4 134 267 134 401 6 % 33 ‰  

5 134 300 167 434 7 % 41 ‰  

6 134 291 158 425 7 % 39 ‰  

7 134 285 152 419 6 % 37 ‰  

8 134 265 132 399 6 % 32 ‰  

The first column gives the case number, the next four columns contain the absolute 

numbers of nodes, pipes, loops and network components. The prefinal column refers the 

number of pipes to the possible number of network links as a percentage. The last 

column refers the number of loops to the possible number of loops as parts per 

thousand. Hence, the last two columns reflect the link density of the network model. 

The maximum number of links in a water network model was calculated as described in  

Appendix VIII. 3.  on page 104. 

Figure 27 shows the new numbers of network components relative to the number of 

network components in the original water network model: 

                                                 

6 The lowest linear pipe conductance of the original network is kept in the simplified one. It is seen as a lower limit to which small 

changes are allowed. Therefore, if the solver has no problems with the original network, it will have no problems with the 

simplified network, also. 
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Loops 134.63% 86.34% 73.66% 65.37% 81.46% 77.07% 74.15% 64.39%

1 2 3 4 5 6 7 8

 

Figure 27. Numbers of Network Components after Simplification
7
 compared to the 

ones before for the Skipton Water Network Model. 

As expected, the number of nodes is reduced to the same value in each simplification. 

The number of pipes in the simplified network model varies, their number depends on 

the height of the relative and absolute writeback criteria. All simplification approaches 

with writeback criteria reduce the total number of pipes more than without writeback 

criterion. In the simplification with all pipes (case 1), the number of loops is about 
1
/3 

higher than in the original network model. With writeback criteria, the number of loops 

is between ~¼ and ~
1
/3 lower than in the original network model. The numbers of 

network components get reduced to ~23% for all pipes and down to ~17% for the 

highest relative and absolute writeback criteria. 

                                                 

7 The percentage of loops refers to the secondary value axis, all others to the first one. 
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Figure 28. The network after Simplification,  

all linear pipe conductances were written back. 

The simplified network model with all pipes in Figure 28 has a totally different 

appearance than the original network model. The models, which were simplified with 

writeback criteria, have the same appearance, but their pipe networking is less dense. 

IV. 1. 4. Errors at the 08:00 Snapshot 

Now, the errors of the simplified models at the 8:00 snapshot will be discussed.  

After simplification, only the non-removable nodes of a network model and its 

untouchable pipes will stay the same. Therefore, the head in the non-removable demand 

nodes and flows in the untouchable pipes will be analysed here. To facilitate the 

mapping between the heads and flows, the nodes and pipes are sorted in ascending order 

according to their label (“UID”) in StruMap. This results in a grouping effect, because 

network components, which are geographically close, have also close numbers. Hence, 

the errors of flow in both pipes, which are connecting a valve, appear together in the 

following figures. 
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Firstly, the results of the simplification with all pipes will be compared. Then, the 

absolute errors produced by the relative writeback criterion will be viewed, followed by 

the ones of the absolute writeback criterion. Finally, the relative errors of all performed 

simplifications will be compared. 

IV. 1. 4. a. Simplification with all Pipes 

Absolute Error of Head, Simplification with all Pipes
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Figure 29. Absolute Error of Head, Simplification with all Pipes. 

The maximum absolute error of the head is 0.0163m and the standard deviation is 

0.003m. Hence, these results are very acceptable. 
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Absolute Error of Flow, Simplification with all Pipes
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Figure 30. Absolute Error of Flow, Simplification with all Pipes. 

The maximum flow error is 0.055 l/s, the standard deviation is 0.013 l/s. The values 

above will be further analysed relative to the original flow in the untouchable pipes to 

identify high relative errors. 

Relative Error of Flow, Simplification with all Pipes
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Figure 31. Relative Error of Flow, Simplification with all Pipes. 
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The relative errors of flow are mainly beyond ±1%, there is one peak with 23.17% in 

the left third of the figure above, one in the right third with –1346.34%. These extreme 

peaks appear in the untouchable pipes with the lowest flow of all: 

Table 7. Pipes with the highest relative error. 

Label (UID) Original  Simplified Abs. Error Relative Error 

 Flow l/s Flow l/s Flow l/s  

1725 0.0574 0.0441 0.0133 23.17% 

1727 0.0575 0.0442 0.0133 23.13% 

2181 0.0041 0.0593 -0.0552 -1346.34% 

2183 0.0041 0.0593 -0.0552 -1346.34% 

It is very likely, that solver causes these errors. Except for these errors, the accuracy of 

the flows is very acceptable also. 

IV. 1. 4. b. Relative Writeback Criterion 

The following figures illustrate the absolute error of the simplified models with the 

relative writeback criterion. Firstly, the absolute error of the heads will be viewed. 

Absolute Error of the Available Head in the Demand Nodes

-25

-20

-15

-10

-5

0

5

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

Demand Node Index

A
b
s
o
lu
te

 E
rr
o
r 
[m

]

1 2 3 4  

Figure 32. Absolute Error of the Available Head in the Demand Nodes  

for the relative cases. 

As expected, the models with a higher relative writeback criterion show a higher 

absolute error. The error appears unpredictable, as the peak of case 2 in the left hand 

side and the sequence of case 4 in the left middle of the figure illustrate. These peaks are 
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extraordinary large, compared to the all other absolute errors. Their size is about ten 

times bigger. 

Now, the absolute errors of the flow will be regarded. 

Absolute Error of Flow in the Pipes
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Figure 33. Absolute Error of Flow in the Pipes. 

The absolute errors of flows for high relative writeback levels are partially of the same 

size as the flows in the pipes themselves. Again, the errors seem to appear randomly, as 

it can be seen when case 2 is compared to case 4. 
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IV. 1. 4. c. Absolute Writeback Criterion 

Absolute Error of the Available Head in the Demand Nodes
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Figure 34. Absolute Error of the Available Head in the Demand Nodes. 

With the absolute writeback criterion, the absolute errors of the heads are of magnitudes 

smaller than with the relative writeback criterion. Except for case 8, the errors are 

generally all within ± 5 cm. The latter writeback criterion shows errors, which are 

mainly below ± 10 cm. The largest ones are around ± 0.1 m, a very good value. The 

errors seem to increase slightly with the level of the absolute writeback criterion. 

Absolute Error of Flow in the Pipes
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Figure 35. Absolute Error of Flow in the Pipes. 
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The absolute error of flow lies mainly beyond ± 50 ml/s, except for the errors of case 8, 

where the absolute error is mostly beyond ± 250 ml/s . As the absolute errors of the 

available heads, the absolute errors of flow increase with the level of the writeback 

criterion. 

IV. 1. 4. d. Comparison of Maximum and Standard Deviation  

of the Absolute Value of the Absolute Errors 

The following table shows the maximal values of the absolute values of the absolute 

errors for the simplifications. 

Table 8. Maximal Errors and Std. Deviation for the Heads in the Simplifications. 

 1111    2222    3333    4444    5555    6666    7777    8888    

Demand Nodes (|Absolute Error| of Available Head, m)Demand Nodes (|Absolute Error| of Available Head, m)Demand Nodes (|Absolute Error| of Available Head, m)Demand Nodes (|Absolute Error| of Available Head, m)    

Max 0.0163 12.5 2.04 23.0 0.0268 0.0471 0.0522 0.102 

Std Dev 0.003 1.33 0.628 7.620 0.00781 0.0140 0.0154 0.0270 

Pipes (|Absolute Error| of Flow, l/s)Pipes (|Absolute Error| of Flow, l/s)Pipes (|Absolute Error| of Flow, l/s)Pipes (|Absolute Error| of Flow, l/s)    

Max 0.0552 1.988 1.025 2.498 0.0552 0.0469 0.0514 0.378 

Std Dev 0.0125 0.331 0.195 0.527 0.0135 0.0116 0.0127 0.0754 

The maximal errors are generally much higher for the relative writeback criterion then 

for the absolute one. The maximal absolute error of flow is lower than the absolute error 

of flow (for case 5, 6 and 7) in the simplified network with all pipes. This may result 

from the absence of the pipes with the lowest conductances in the simplified network 

with the mentioned writeback criteria. 

The same phenomenon is true for the standard deviation of the absolute error in the 

pipes of case 6. 

IV. 1. 4. e. Comparison of Relative Errors 

Firstly, the relative errors of the heads will be compared. 



Maschler, T. and D.A. Savic, (1999) Simplification of Water Supply Network Models through 
Linearisation, Centre for Water Systems, Report No.99/01, School of Engineering, University of Exeter, 
Exeter, United Kingdom, p.119. 

77 

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

Simplification Case

Max 0,07% 14,61% 17,39% 195,78% 0,21% 0,37% 0,40% 0,51%

Std Dev 0,01% 1,55% 2,92% 34,01% 0,03% 0,06% 0,07% 0,08%

1 2 3 4 5 6 7 8

 

Figure 36. Comparison of the Relative Error of the Head in the Nodes:  

Maximal Value, Standard Deviation. 

For the relative writeback criterion, the maximal relative errors are all higher than 10%, 

their standard deviations are generally higher than 1%. For the absolute writeback 

criterion, the maximal absolute errors are except for the one of case 8 with 0.51%, lower 

than 0.5%, which is very good. The standard deviation for the absolute errors of the 

absolute writeback criterion is for all simplifications below 0.1%, an excellent result. 

Now, the relative error of the flow will be compared.  
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Table 9. Maximal Relative Error and Maximal Relative Std. Deviation for the 

Flows of the simplified Network Models. 

case 1 2 3 4 5 6 7 8 

Max 1346.34% 1346.34% 1346.34% 1346.34% 1346.34% 565.85% 563.41% 1346.34% 

Std Dev 198.41% 199.17% 242.07% 233.77% 198.40% 83.16% 82.98% 198.30% 

 

The high maximum values and the high standard deviations result from the four pipes 

(see Table 7), which have a very low conductance and therefore a very low flow: 

Table 10. Pipes with very low Flow in the Simplified Network Models. 

case Org. NW 1 2 3 4 5 6 7 8 

Label Flow l/s 

1725 0.0574 0.0441 0.042 -0.5066 -0.4478 0.0527 0.0566 0.0573 0.0564 

1727 0.0575 0.0442 0.0421 -0.5066 -0.4478 0.0526 0.0566 0.0574 0.0564 

2181 0.0041 0.0593 0.0593 0.0593 0.0593 0.0593 0.0272 0.0272 0.0593 

2183 0.0041 0.0593 0.0592 0.0593 0.0592 0.0593 0.0273 0.0272 0.0593 

This cause could derive from a solving error. In further analyses, these four pipes will 

not be included. The following chart was generated without the mentioned pipes: 
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Figure 37. Comparison of Relative Error of the Flow in the Pipes: 

 Maximal Value, Standard Deviation. 
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It can be seen that the maximal relative errors of flow are more than ten times as worse 

with the relative writeback criterion as with the absolute one. The maximum relative 

errors with the absolute writeback criterion are around 10%, the standard deviation is 

about 3 to 4 times as high as in the simplified model with all pipes. 

IV. 1. 4. f. Conclusions 

As the errors were much worse using the relative writeback criterion, rather than using 

the absolute one, the absolute writeback criterion shall be given preference for this 

water network model. With the absolute writeback criterion, there is a minimal growth 

of error in the head, the error of flow increases more. 

IV. 1. 5. 24-Hour Simulation 

IV. 1. 5. a. Absolute Errors 

The following table gives a brief overview over the maximal errors and the standard 

deviation of the Skipton water network model in a 24h simulation. 

Table 11. Absolute maximal Errors and Standard Deviation of the Skipton Water 

Network Model in a 24h Simulation. 

 maximal Errors Standard Deviation 

Case 1 5 8 1 5 8 

Head in the Nodes mHead in the Nodes mHead in the Nodes mHead in the Nodes m    

N 723 0.733 0.733 0.759 0.175 0.175 0.175 

N 924 1.236 1.236 1.220 0.290 0.290 0.283 

N 40 0.041 0.037 0.071 0.010 0.009 0.019 

Flow in the Pipes l/sFlow in the Pipes l/sFlow in the Pipes l/sFlow in the Pipes l/s    

P 2146 0.016 0.016 0.386 0.004 0.004 0.037 

P 1862 0.000 0.000 0.000 0.000 0.000 0.000 

All the maximal absolute errors in terms of heads for the first node, node 723 are all 

below 0.8m. Node 924 has maximal absolute errors below 1.5m. Node 40 has the 

smallest ones: the absolute errors are smaller than 10cm. Case 5 has the same maximal 

absolute errors than case 1. Case 8 is against case 1 still acceptable, the errors did not 

get much bigger with the highest absolute writeback level. 
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The pipe 1862 shows no errors at all. This pipe supplies the whole area on the right 

hand side in Figure 1 on its own. Therefore, all demand of its supply area is summed up 

at its end. 

Now, the absolute error of the heads 723, 924 and 40 and the absolute error of the flow 

in pipe 2146 will be investigated. 
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Figure 38. Available Head at Node 723 during 24 hours. 

The available head is the same at 08:00 for all cases. It differs the more, the available 

head is away from the available head at the working point. The curves for the cases 1 

and 5 are identical. 
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Absolute Error of the Available Head in Node 723
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Figure 39. Absolute Error of Available Head in Node 723 during 24 Hours. 

The absolute error of available head vanishes for all cases at 07:00 and 08:00. As seen 

above, the errors of the cases 1 and 5 have exactly the same pattern. The error of case 8 

is only a little bit higher than the ones of case 1 and 5. 
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Figure 40. Available Head at Node 924 during 24 hours. 
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The available head at node 924 follows from 00:00 to 18:00 same curve, but at 19:00 

and 20:00, the available heads of the simplified network are all high above the available 

head of the original network model. 

Absolute Error of the Available Head in Node 924
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Figure 41. Absolute Error of Available Head in Node 924 during 24 Hours. 

The absolute error of available head follows the same pattern for all three cases. There 

is a strong peak at 19:00, the absolute error peak is less than 5% of the demand  at 19:00 

at node 924. This peak may result from different demands in the evening in the 

northwest of the water network compared with its rest. 
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Available Head at Node 40
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Figure 42. Available Head at Node 40 during 24 hours. 

The available heads at node 40 are identical with the available heads for all three cases. 

Absolute Error of the Available Head in Node 40
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Figure 43. Absolute Error of Available Head in Node 40 during 24 Hours. 

As seen in Table 11 above, the absolute error of  ±7cm is the lowest one in the three 

observed nodes. The absolute error of case 8 is far bigger than the ones of the other two 

cases. 
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Flow in Pipe 2146
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Figure 44. Flow in Pipe 2146 during 24 hours. 

The flow in pipe 2146 is the same as the one of the original network model for the cases 

1 and 5, the flow of case 8 lies always a little bit beyond the other flows. 

Absolute Error of the Flow in Pipe 2146
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Figure 45. Absolute Error of Flow in Pipe 2146 during 24 Hours. 

The absolute error in pipe 2146 is almost zero for the cases 1 and 5, but the absolute 

error of case 8 shows an offset between 250 and 300 ml/s. 
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IV. 1. 5. b. Relative Errors 

In this subsection, the relative errors in 24h simulations of the simplification cases 1, 5 

and 8 will be viewed. 

Table 12. Maximal Relative Errors for the Simplification Cases 1, 5 and 8. 

 Maximal Relative Errors Standard Deviation 

Case 1 5 8 1 5 8 

NodesNodesNodesNodes    

N 723 1.42% 1.41% 1.46% 0.36% 0.36% 0.36% 

N 924 4.41% 4.41% 4.35% 1.01% 1.01% 0.99% 

N 40 0.05% 0.04% 0.08% 0.01% 0.01% 0.02% 

PipesPipesPipesPipes    

P 2146 0.03% 0.03% 0.64% 0.01% 0.01% 0.04% 

P 1862 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Although all relative errors lie beyond 5%, only the maximal relative errors for node 

924 are bigger than 1.5%. The standard deviation is mainly between 0 and 1% for the 

investigated network components. The relative error in pipe 1862 is zero, as seen above. 

IV. 1. 5. c. Conclusions 

IV. 1. 6. Benchmarking 

To determine the solving time reduction when simplifying, the following models were 

run 500, 1000 and 2000 times at the 8 o’clock snapshot: 

� The full model. 

� The simplification cases 1, 5 and 8. 

Due to their comparatively high errors, a simplification case with a relative writeback 

criterion was not analysed here. 

The benchmarking was done by determining the difference between start and end time 

for the numbers of runs mentioned above. The solving process includes writing the 

results to the hard disk. So the actual solving time alone would be slightly smaller than 

determined here. 

Table 13. Overview over the total solving time. 

runsrunsrunsruns    Full 1/100 sFull 1/100 sFull 1/100 sFull 1/100 s    Case 1 1/100 sCase 1 1/100 sCase 1 1/100 sCase 1 1/100 s    Case 5 1/100 sCase 5 1/100 sCase 5 1/100 sCase 5 1/100 s    Case 8 1/100 sCase 8 1/100 sCase 8 1/100 sCase 8 1/100 s    

500500500500    12545 3553 2895 2801 
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1000100010001000    23981 6882 5773 5306 

2000200020002000    47763 14159 11546 11171 

Table 14. The solving time per run: 

runsrunsrunsruns    Full 1/100 sFull 1/100 sFull 1/100 sFull 1/100 s    CaseCaseCaseCase 1 1/100 s 1 1/100 s 1 1/100 s 1 1/100 s    Case 5 1/100 sCase 5 1/100 sCase 5 1/100 sCase 5 1/100 s    Case 81/100 sCase 81/100 sCase 81/100 sCase 81/100 s    

500500500500    25.09 7.106 5.79 5.602 

1000100010001000    23.981 6.882 5.773 5.306 

2000200020002000    23.8815 7.0795 5.773 5.5855 

The relative solving time is illustrated in Figure 46 below. 

Comparison of Benchmark Results of Simplified Networks
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Figure 46. Comparison of Benchmark Results of Simplified Networks. 

The total solving time seems to increase slightly with the number of runs. This may be 

due to the growing output file on the hard disk. Over all, it can be said that the solving 

time decreases to approximately one third of the original one, when using the simplified 

model with all pipes. With the writeback criterion, the solving times decreases even 

further, to around one fourth and slightly lower, depending on the set limit. 
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IV. 1. 6. a. Conclusions 

A writeback criterion is a good choice to increase solving speed by further ~5%. The 

solving speed does not increase significantly for a higher level of the absolute writeback 

criterion. 

IV. 1. 7. Summary 

In terms of errors in the available head, a moderate absolute writeback criterion 

increases the relative error only very slightly, in terms of errors in the flows a little bit 

more. As well, the solving time decreases further with an absolute writeback criterion. 

The relative writeback criterion was not able to remove low conductance pipes from the 

simplified water network models, which caused solver errors. 

 

IV. 2. Hawksworth Lane Water Network Model in Guiseley 

IV. 2. 1. Brief Description 

Guiseley is a small town in Yorkshire, 14km north-west of Leeds. The Hawksworth 

Lane water supply network is situated in the part of the city west of the railway.  
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Figure 47. Guiseley. 

The Hawksworth Lane water network model has approximately 500 pipes and 450 

demand nodes. It contains the following special network components: 

� 1 “Source”    (StruMap Property “V_Source”). 

� 2 “Pressure Reducing Valves”  (StruMap Property “V_PRV”). 

� 11 “Closed Valves”  (StruMap Property  

     “V_SLUICE_CLOSED”). 

For a cost function, the heads in some nodes and the flow in some pipes will be chosen. 

This will be done randomly, as in section IV. 1.  

IV. 2. 2. Preparations 

The nodes 1722, 1558 and 1675 were marked as non-removable and the pipes 1443 and 

1236 were marked as untouchable. The number corresponds to the attribute “UID” in 

StruMap. The mentioned special network components from above were marked as 

untouchable, as well. 

The simplification preparation routine returned the following output: 

 

 SIMPLIFICATION PREPARATION 
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11 closed valves have been deleted. 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   461 non-removable: 3 

Pipes:   519 

Loops:   59 

N. of NW Components: 980 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   450 non-removable: 15 

Pipes:   497 

Loops:   48 

N. of NW Components: 947 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

The simplification preparation routine removed the 11 closed valves, because their 

connections cannot be represented by the static simplification. This was discussed in 

chapter III. 3. 2. a.  above. The number of non-removable nodes increased from the 3 

nodes for the cost function to 15. 4 of the new non-removable nodes are start and end 

nodes for the 2 untouchable pipes, 3 represent the special network components source 

and pressure reducing valves. The remaining 5 non-removable nodes protect the special 

network components from being removed. A screenshot of the Hawksworth Lane water 

network model can be found in Figure 48 below. 
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Figure 48. Screenshot of the original Hawksworth Lane water network model. 

IV. 2. 3. Simplification 

The simplification was done for the following cases: 

 1. without writeback criterion 

2 times with the absolute writeback criterion: 

 2.  level: 0.95 

 3.  level: 10 

And 2 times with the relative writeback criterion: 

 4.  level: 0.0002 

 5.  level: 0.001 
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A screenshot of the Hawksworth Lane water network model simplified with case 1 is 

shown below. 

 

Figure 49. Screenshot of the simplified Hawksworth Lane water network model. 

The output of the static simplification routine can be found in the appendix, chapter 

VIII. 4. 2. on page 8. The absolute writeback criterion did not delete any pipe in the 

Hawksworth Lane network model in the cases 2 and 3. This is due to the high reduction 

of network components. The relative writeback criterion removed in the 4
th

 case 8 pipes 

from the 30 remaining after simplification, in the 5
th

 case 10 pipes, 
1
/3

rd
 of the remaining 

ones. The following table gives a brief overview over the reduction of the number of 

network components: 

Table 15. Comparison of the number of network components. 

Case Nodes Pipes Loops 
NW 
Components 

Pipes/  
loops/ 
possible loops 
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possible links 

Orig. NW 450 497 48 947 0 % 0 ‰ 

1,2,3 15 30 16 45 35 % 225 ‰ 

4 15 22 8 37 25 % 112 ‰ 

5 15 20 6 35 23 % 84 ‰ 

The following chart gives an overview over the new numbers of network components 

relative to the ones of the original water network model: 

0.00%
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7.00%

Case

0.00%

5.00%
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20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

Nodes 3.33% 3.33% 3.33%

Pipes 6.04% 4.43% 4.02%

NW Elements 4.75% 3.91% 3.70%

Loops 33.33% 16.67% 12.50%

1,2,3 4 5

 

Figure 50. Numbers of Network Components after Simplification compared to the 

ones before for the Hawksworth Lane water network model
8
. 

The number of nodes gets reduced to approximately 3% of the original number of nodes 

for all cases. The number of pipes gets reduced to ~6% in case 1,2 and 3 and to ~4% in 

case 5. The number of loops gets reduced to ~33% for the cases 1,2 and 3 and by further 

~17% to ~17% for case 4 and by ~21% to 12.5% in case 5. 

IV. 2. 4. Errors 

In this section, the errors of the cases 1, 4 and 5 at the 08:00 will be compared. 

                                                 

8 The number of loops refers to the secondary value axis on the right hand side of the figure. 
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IV. 2. 4. a. Errors in the Non-Removable Nodes 

The errors in the non-removable nodes in terms of head at the 08:00 snapshot are given 

below. 

Table 16. Errors in the non-removable nodes. 

 abs. Err. rel. Err. 

Label 1 4 5 1 4 5 

1506 0 0 0 0.00% 0.00% 0.00% 

1522 -1E-04 0.0002 0.0269 0.00% 0.00% 0.05% 

1523 -0.0002 0.0003 0.0291 0.00% 0.00% 0.04% 

1558 0.0001 0.0001 0.0184 0.00% 0.00% 0.03% 

1675 -0.0002 0.0012 0.03 0.00% 0.00% 0.04% 

1678 -0.0003 0.0003 0.0291 0.00% 0.00% 0.03% 

1679 0 0 0 0.00% 0.00% 0.00% 

1690 0 0 0 0.00% 0.00% 0.00% 

1691 0 0 0 0.00% 0.00% 0.00% 

1722 0 0 0 0.00% 0.00% 0.00% 

1752 -0.0004 0.0006 0.0294 0.00% 0.00% 0.03% 

1812 -0.0003 0.0006 0.0294 0.00% 0.00% 0.03% 

The highest absolute errors are lower than one millimetre for case one, for case 4 and 5 

lower than 3cm. The relative errors are zero for case 1 and 4 and for case 5 beyond 

0.5%. 

IV. 2. 4. b. Errors in the Untouchable Pipes 

The following table gives the flow errors at the 08:00 snapshot in the untouchable pipes. 

Table 17. Errors in the Untouchable Pipes. 

 abs. Err. rel. Err. 

Label 1 4 5 1 4 5 

1065 0.0006 0.0006 0.0006 0.00% 0.00% 0.00% 

1236 0 0 0 0.00% 0.00% 0.00% 

1443 -0.0043 -0.0007 0.1579 0.03% 0.00% -0.98% 

1955 0 0 0 0.00% 0.00% 0.00% 

1956 0 0 0 0.00% 0.00% 0.00% 

1958 0 0 0 0.00% 0.00% 0.00% 

1959 0 0 0 0.00% 0.00% 0.00% 

The relative errors are mainly zero, except of the relative error in the pipe 1443 in case 

5. Its absolute value is beyond 1%, which is still very good. 
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IV. 2. 5. Errors in the 24-Hour-Simulations 

In this section, the maximal relative errors and the standard deviation of the relative 

errors will be compared for 24-hour simulations of the resulting network models for the 

cases 1, 4 and 5. 

Table 18. Maximal Relative Errors and Standard Deviation of the Relative Errors of 

the Hawksworth Lane Network Model. 

 max. |rel. error| Std. Dev. 

Case 1 4 5 1 4 5 

NodesNodesNodesNodes    

1722 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

1558 0.00% 0.00% 0.03% 0.00% 0.00% 0.01% 

1675 0.00% 0.00% 0.04% 0.00% 0.00% 0.01% 

PipesPipesPipesPipes    

1443 0.05% 0.08% 1.07% 0.01% 0.01% 0.02% 

1236 0.01% 0.01% 0.01% 0.00% 0.00% 0.00% 

The maximal relative error is for the cases 1, 5 and 5 well beyond 0.1%, except for the 

pipe 1443 in case 5. The standard deviation is beyond 0.05% for all nodes and cases. 

IV. 2. 6. Benchmarking 

The original network and the model case studies 1, 4 and 5 were used in this section. As 

above in chapter IV. 1. 6. , the solving time is slightly smaller than determined here, 

because of the writing to the hard disk. 

The following table gives an overview over the total solving time for 500, 1000 and 

2000 runs. 

Table 19. Solving Time for different Numbers of Runs  

for the Hawksworth Lane Water Network Model. 

Runs Orig. NW Model Case 1 Case 4 Case 5 

500 5009 203 187 176 

1000 9826 417 379 368 

2000 19614 851 752 742 

From the table above, the relative solving time in table Table 20 below was calculated: 

Table 20. Solving Time per Run  

for the Hawksworth Lane Water Network Model. 

Runs Orig. NW Model Case 1 Case 4 Case 5 
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500 10.018 0.406 0.374 0.352 

1000 9.826 0.417 0.379 0.368 

2000 9.807 0.4255 0.376 0.371 

The following figure illustrates the solving times of the simplified models compared to 

the one of the original model. 

Relative Solving Time of the Simplified Hawksworth Lane Water Network Models
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Figure 51. Relative Solving Time of the Simplified Hawksworth Lane  

Water Network Models. 

The solving time does not decrease significantly for the cases 4 and 5 compared to case 

1. It can be said, that the solving time decreases to about 4 per cent for all runs and to 

slightly less with the absolute writeback criterion. 

IV. 2. 7. Summary 

The Hawksworth Lane water network model has in the current configuration only 3 

special network components. Therefore, the simplified water network models are very 

small. The absolute writeback criterion did not remove pipes with the given decision 

level. The relative writeback criterion resulted with the tested levels with about 
1
/3

rd
 less 

pipes than the simplified model with all pipes. The solving time went down beyond 5% 
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of the one of the original network model. It did not decrease much more with the 

absolute writeback criterion. 

IV. 3. Conclusions 

The solving time gets reduced drastically in all cases for both water network models: it 

sank to 
1
/3 and less for the Skipton Water network model and to approximately 1/25 for 

the Hawksworth Lane water network model. The number of network components of the 

simplified network models — and therefore their solving time — is depends on the 

number of special network components and on the output vector for the cost function. 

The relative writeback criterion did not remove all pipes in the simplifications of the 

Hawksworth Lane network model, which caused solver errors, but the absolute 

writeback criterion did so.  

The 24h simulations were except for the worst cases all very well. To ensure that 

possible errors will not affect the cost function, the errors of the heads and flows for the 

output vector should be regarded for the worst settings of the input vector. 
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V — SUMMARY AND CONCLUSIONS 

V. 1. Summary 

This report has described and analysed methodologies to simplify water network models 

for simulation purposes. To do so, it was structured in three major chapters, the problem 

formulation, the development of a simplification algorithm and case studies. 

The problem formulation introduced briefly the purpose of water network models and 

their network topology. It explained the equations that describe the behaviour of the 

main water network model components, nodes and pipes. Next, it defined the simulation 

time problem and discussed simplification objectives. Then, it gave a brief overview 

over simplification algorithms found in recent literature, component-based approaches 

as well as those, where the network model is substituted with an adequate, quicker 

model. 

The second chapter, dealing with the development of a simplification algorithm, 

elucidates the “static simplification” algorithm of Ulanicki et al (1996) and defined 

requirements for it. Based on these requirements and on the interfaces for the water 

network scheduling optimisation process, an algorithm was developed to identify the 

simplification range in the water network model. As well, the treatment of pipe 

attributes was discussed. Following, it was shown that the static simplification 

algorithm carries out the network model component based simplification approaches 

unification of nodes, parallel pipes and pipes in series and tree elimination. In addition, 

the static simplification algorithm was improved with the facility to delete low 

conductance pipes before generating the simplified model. Then, the implementation of 

the algorithm was discussed. The static simplification algorithm was included as a 

module in the geographic information system StruMap. The coding was done in C++. 
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Then, the algorithm was explained in detail with activity diagrams. Finally, an example 

for the algorithm was given and tested with the program. 

The case studies dealt with two network models, one of the water supply network in 

Skipton, Yorkshire, and another one with a model on the water supply network of the 

Hawksworth Lane Area in Guiseley, Yorkshire. Both networks were simplified with a 

number of different writeback criterion levels to eliminate low conductance pipes. The 

Skipton water network model with about 50 special network components showed 

extreme solving errors with relative writeback criteria, but very low errors with absolute 

writeback criteria. The Hawksworth Lane water network model with only 3 special 

network components did not lose any pipe with a moderate absolute writeback criterion, 

because the simplified model was very compact. The relative writeback criterion deleted 

up to 
1
/3

rd
 of the pipes in the simplified model with an almost neglectable error. The 

simplified models were benchmarked, it turned out that the simplified Skipton water 

network model is solved about 3-4 times faster, the simplified Hawksworth Lane water 

network model around 25 times faster. Both models were checked in 24h simulations, 

as well. 

V. 2. Recommendations for Future Work 

The geographical information system StruMap displays after using the simplification 

modules sometimes memory management error messages. To avoid the dependency on 

StruMap, the static simplification algorithm could be coupled to a database or be made 

an application on its own. Further, special network components like pumps, valves, etc. 

could be identified automatically. In addition, the absolute writeback criterion should be 

reformulated, so that it relates to the total sum of linear pipe conductances in the 

network model. 

For various tasks of water network models, component-based simplification is very 

useful to maintain as much as possible of the network structure. The component-based 

simplifications, which are discussed in this report, could be implemented for these tasks. 

As s final suggestion, the static simplification algorithm could be merged with a solver. 

Therefore, redundant heads and flows in the output vector of the network model would 

be avoided when optimising schedules, for example with genetic algorithms. 
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VIII — APPENDIX 

VIII. 1. Calculation of the c Constant in the Hazen-Williams 

Equation for StruMap 

The constant c was calculated basing on the head difference, the pipe diameter, the 

Hazen-Williams-Coefficient, the pipe length and the flow of eight pipes in a water 

network model in StruMap. 

Therefore, the following relationship derived from (6) on page 16: 

(53) 

k

e

k

k

k

e

k

e

k

QQl
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∆
⋅

⋅
= ;  k=1,2,…,Np 

Table 21. Calculation of the c Constant for the Hazen-Williams-Formula. 

Difference in 
Total Head m 

Diameter mm H.W. coeff. Length mm Flow l/s calculated 
Constant c 

0.0960 76 20 112.3400 0.1388 1.215581E+10 

0.1066 76 20 11.9300 0.4938 1.214828E+10 

0.5302 76 20 55.4400 0.5120 1.216003E+10 

0.4567 254 90 238.82 23.1289 1.215521E+10 

0.1756 254 100 111.5 23.1368 1.215707E+10 

0.9534 76 40 374.26 0.501 1.215556E+10 

0.0171 254 90 8.79 23.3623 1.213786E+10 

In the program code the average of the calculated c values above is used:  

c :=1.215283E+10 . 
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VIII. 2. The Number of Loops in a Water Network 

Let NP be the number of pipes in a network and NN the number of nodes. A network 

formed as a tree has one starting node, every other node is linked to this node or another 

one with exactly one pipe. So, for a tree network the following relation can be found: 

(54) NP = NN – 1 . 

When there are loops in a network, the number of pipes is greater than the number of 

nodes excluding the starting node: 

(55) NP > NN – 1 . 

The supernumerary pipes form the loops of the network. Hence, the number of loops NL 

can be introduced as: 

(56) NL = NP – (NN – 1) = NP + 1 – NN . 

VIII. 3. Determination of the Maximum Number of Pipes in a 

Water Network 

The maximum number of Pipes is used to express the pipe density and the loop density 

of a water network in SpeedUp. The output of the simplification modules of SpeedUp 

relates the number of pipes in the network model to the possible number of pipes. In 

addition, it relates the number of loops to the possible number of loops in the network 

model. Both will be derived via the maximum number of links in a general network. 

VIII. 3. 1. The Maximum Number of Links in a General Network 

The maximum number of links ML in a network is the number of pipes in a network, 

where every node is connected through exactly one pipe with every other node
9
. 

                                                 

9 A link can be expressed by one or more parallel pipes. 
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Every network begins with a starting node. When adding a node to the network, it has to 

be connected to all other nodes. Therefore, the number of links increases by the number 

of already existing nodes: 

(57) ML(NN) = ML(NN - 1) + (NN - 1)  with 

    ML(1) = 1 and 

    ML(0) = 0 . 

This recursive relationship is equal to the following sum: 

(58) 0;)(
1

1

>= ∑
−

=
N

N

i

NL NiNM
N

 . 

To prove this, (57) will be converted: 

(59) ML(NN) - ML(NN - 1) = (NN - 1) . 

The same will be done with equation (58):  

(60) )1()1()(
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VIII. 3. 2. The Maximum Number of Pipes in a Water Network 

Water networks possess a number of special components, which influence the 

maximum number of links in the network. 

� It shall be assumed that reservoirs and sources, treated as nodes, are connected 

with exactly one pipe to the rest of the network. 

� Valves and other special network components are treated as nodes as well. 

Characteristically they operate between exactly two nodes. Therefore, they 

require exactly two pipes. 

Therefore, the formula for the maximum number of links, equation (58), will be 

upgraded:  

� The maximum number of links in a general network can only be found between 

all normal nodes, their number is 
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(61) NNorm = NN – NR – NSpec  with 

  NNorm number of normal nodes, 

        NR: number of reservoirs 

and  NSpec: number of valves, etc. . 

� Each reservoir requires one pipe, so it increases the maximum number of links 

by one. 

� Each special network component increases the maximum number of links by 

two. 

This results in the following upgraded equation: 

(62) SpecR

NNN

i

SpecRNL NNiNNNM
SpecRN

⋅++= ∑
−−−

=

2),,(

1

1

 

with SpecRNSpecR NNNNN +>≥> ;0;0  . 

VIII. 4. Output of the Simplification Routine  

for the Skipton Water Network 

VIII. 4. 1. Skipton Water Network 

The static simplification algorithm generated the following output. The static 

simplification algorithm used the heads and the flows at the 8 o’clock snapshot. The 

snapshot was directly calculated, not as part of a 24h simulation. 

VIII. 4. 1. a. Case 1 

All new linear pipe conductances of the Jacobian matrix of the model were written back 

into StruMap. 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 1090x1090 . 

 

Reading pipes back. 

0 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

Corrected hDiff. 
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 STATISTICS BEFORE 

=============================================== 

 

Nodes:   1091 non-removable: 134 

Pipes:   1295 

Loops:   205 

N. of NW Components: 2386 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   134 non-removable: 134 

Pipes:   409 

Loops:   276 

N. of NW Components: 543 

The pipes represent 9 %  of all possible links. 

The loops represent 68 o/oo  of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  134  1091  -87 % 

Pipes:  409  1295  -68 % 

Loops:  276  205  34 % 

NW Components: 543  2386  -77 % 

VIII. 4. 1. b. Case 4 

The relative writeback criterion was used with a writeback level of 0.0002. 

 

  LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 1090x1090 . 

 

Reading pipes back whose linear conductance is bigger than 

19/100 000 of the summed conductances of its nodes. 

142 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

Corrected hDiff. 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   1091 non-removable: 134 

Pipes:   1295 

Loops:   205 

N. of NW Components: 2386 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 
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 STATISTICS AFTER 

=============================================== 

 

Nodes:   134 non-removable: 134 

Pipes:   267 

Loops:   134 

N. of NW Components: 401 

The pipes represent 6 %  of all possible links. 

The loops represent 33 o/oo  of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  134  1091  -87 % 

Pipes:  267  1295  -79 % 

Loops:  134  205  -34 % 

NW Components: 401  2386  -83 % 

 

VIII. 4. 1. c. Case 3 

The relative writeback criterion was used with a writeback level of 0.0001. 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 1090x1090 . 

 

Reading pipes back whose linear conductance is bigger than 

10/100 000 of the summed conductances of its nodes. 

125 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

Corrected hDiff. 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   1091 non-removable: 134 

Pipes:   1295 

Loops:   205 

N. of NW Components: 2386 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   134 non-removable: 134 

Pipes:   284 

Loops:   151 

N. of NW Components: 418 

The pipes represent 6 %  of all possible links. 

The loops represent 37 o/oo  of all possible loops. 
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 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  134  1091  -87 % 

Pipes:  284  1295  -78 % 

Loops:  151  205  -26 % 

NW Components: 418  2386  -82 % 

 

VIII. 4. 1. d. Case 2 

The relative writeback criterion was used with a writeback level of 0.00001. 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 1090x1090 . 

 

Reading pipes back whose linear conductance is bigger than 

1/100 000 of the summed conductances of its nodes. 

97 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

Corrected hDiff. 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   1091 non-removable: 134 

Pipes:   1295 

Loops:   205 

N. of NW Components: 2386 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   134 non-removable: 134 

Pipes:   310 

Loops:   177 

N. of NW Components: 444 

The pipes represent 7 %  of all possible links. 

The loops represent 44 o/oo  of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  134  1091  -87 % 

Pipes:  310  1295  -76 % 

Loops:  177  205  -13 % 

NW Components: 444  2386  -81 % 
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VIII. 4. 1. e. Case 5 

The absolute writeback criterion was used with a writeback level of 0.95. 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 1090x1090 . 

 

Reading pipes back 

whose absolute linear conductance is bigger than 

0.95 times the lowest linear conductance in the network. 

109 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

Corrected hDiff. 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   1091 non-removable: 134 

Pipes:   1295 

Loops:   205 

N. of NW Components: 2386 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   134 non-removable: 134 

Pipes:   300 

Loops:   167 

N. of NW Components: 434 

The pipes represent 7 %  of all possible links. 

The loops represent 41 o/oo  of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  134  1091  -87 % 

Pipes:  300  1295  -76 % 

Loops:  167  205  -18 % 

NW Components: 434  2386  -81 % 

 

VIII. 4. 1. f. Case 6 

The absolute writeback criterion was used with a writeback level of 2. 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 1090x1090 . 
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Reading pipes back 

whose absolute linear conductance is bigger than 

2 times the lowest linear conductance in the network. 

118 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

Corrected hDiff. 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   1091 non-removable: 134 

Pipes:   1295 

Loops:   205 

N. of NW Components: 2386 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   134 non-removable: 134 

Pipes:   291 

Loops:   158 

N. of NW Components: 425 

The pipes represent 7 %  of all possible links. 

The loops represent 39 o/oo  of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  134  1091  -87 % 

Pipes:  291  1295  -77 % 

Loops:  158  205  -22 % 

NW Components: 425  2386  -82 % 

 

VIII. 4. 1. g. Case 7 

The absolute writeback criterion was used with a writeback level of 3. 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 1090x1090 . 

 

Reading pipes back 

whose absolute linear conductance is bigger than 

3 times the lowest linear conductance in the network. 

124 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

Corrected hDiff. 

 

 STATISTICS BEFORE 
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=============================================== 

 

Nodes:   1091 non-removable: 134 

Pipes:   1295 

Loops:   205 

N. of NW Components: 2386 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   134 non-removable: 134 

Pipes:   285 

Loops:   152 

N. of NW Components: 419 

The pipes represent 6 %  of all possible links. 

The loops represent 37 o/oo  of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  134  1091  -87 % 

Pipes:  285  1295  -77 % 

Loops:  152  205  -25 % 

NW Components: 419  2386  -82 % 

VIII. 4. 1. h. Case 8 

The absolute writeback criterion was used with a writeback level of 10. 

 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 1090x1090 . 

 

Reading pipes back whose 

whose absolute linear conductance is bigger than 

10 times the lowest linear conductance in the network. 

144 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

Corrected hDiff. 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   1091 non-removable: 134 

Pipes:   1295 

Loops:   205 

N. of NW Components: 2386 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 
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Nodes:   134 non-removable: 134 

Pipes:   265 

Loops:   132 

N. of NW Components: 399 

The pipes represent 6 %  of all possible links. 

The loops represent 32 o/oo  of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  134  1091  -87 % 

Pipes:  265  1295  -79 % 

Loops:  132  205  -35 % 

NW Components: 399  2386  -83 % 

 

VIII. 4. 2. Hawksworth Lane, Guiseley Water Network Model 

The static simplification algorithm generated the following output. The static 

simplification algorithm used the heads and the flows at the 8 o’clock snapshot. The 

snapshot was directly calculated, not as part of a 24h simulation. 

VIII. 4. 2. a. Case 1 

All pipes were written back to StruMap. 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 449x449 . 

 

Reading pipes back. 

0 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   450 non-removable: 15 

Pipes:   497 

Loops:   48 

N. of NW Components: 947 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   15 non-removable: 15 
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Pipes:   30 

Loops:   16 

N. of NW Components: 45 

The pipes represent 35 %  of all possible links. 

The loops represent 225 o/oo  of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  15  450  -96 % 

Pipes:  30  497  -93 % 

Loops:  16  48  -66 % 

NW Components: 45  947  -95 % 

 

VIII. 4. 2. b. Case 2 and 3 

The output of the cases 2 and 3 is identical with case 1; no pipes were deleted. Case 2 

uses the absolute writeback criterion with a level of 0.95. Case 3 uses the absolute 

writeback criterion as well, but with a level of 10. 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 449x449 . 

 

Reading pipes back 

whose absolute linear conductance is bigger than 

0.95 times the lowest linear conductance in the network. 

0 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   450 non-removable: 15 

Pipes:   497 

Loops:   48 

N. of NW Components: 947 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   15 non-removable: 15 

Pipes:   30 

Loops:   16 

N. of NW Components: 45 

The pipes represent 35 %  of all possible links. 

The loops represent 225 o/oo  of all possible loops. 

 

 COMPARISON 
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=============================================== 

 

  New  Old  Compared 

 

Nodes:  15  450  -96 % 

Pipes:  30  497  -93 % 

Loops:  16  48  -66 % 

NW Components: 45  947  -95 % 

 

VIII. 4. 2. c. Case 4 

This case uses the relative writeback criterion with a level of 0.0002. 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 449x449 . 

 

Reading pipes backwhose linear conductance is bigger than 

20/100 000 of the summed conductances of its nodes. 

8 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   450 non-removable: 15 

Pipes:   497 

Loops:   48 

N. of NW Components: 947 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   15 non-removable: 15 

Pipes:   22 

Loops:   8 

N. of NW Components: 37 

The pipes represent 25 %  of all possible links. 

The loops represent 112 o/oo  of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  15  450  -96 % 

Pipes:  22  497  -95 % 

Loops:  8  48  -83 % 

NW Components: 37  947  -96 % 
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VIII. 4. 2. d. Case 5 

This last case study uses the relative writeback criterion with a level of 0.001. 

 

 LINEARISATION & SIMPLIFICATION 

 

Dimension of the Jacobian Matrix: 449x449 . 

 

Reading pipes back, whose linear conductance is bigger than 

100/100 000 of the summed conductances of its nodes. 

10 had a linear branch conductance lower than 

the draw-back-criteria and were not written back. 

 

 

 STATISTICS BEFORE 

=============================================== 

 

Nodes:   450 non-removable: 15 

Pipes:   497 

Loops:   48 

N. of NW Components: 947 

The pipes represent 0 %  of all possible links. 

The loops represent 0 o/oo  of all possible loops. 

 

 STATISTICS AFTER 

=============================================== 

 

Nodes:   15 non-removable: 15 

Pipes:   20 

Loops:   6 

N. of NW Components: 35 

The pipes represent 23 %  of all possible links. 

The loops represent 84 o/oo  of all possible loops. 

 

 COMPARISON 

=============================================== 

 

  New  Old  Compared 

 

Nodes:  15  450  -96 % 

Pipes:  20  497  -95 % 

Loops:  6  48  -87 % 

NW Components: 35  947  -96 % 

VIII. 5. User Manual 

This section guides through the simplification procedure with SpeedUp. 

� The attribute “non-removable” has to be set “true” for all nodes, whose head is 

necessary for the cost function, and “false” otherwise. 

� The attribute “untouchable” has to be set “true” for all pipes, whose flow is 

needed for the cost function and for all input components, otherwise “false”. 
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Now, SpeedUp can be called. This can be done by calling the main menu entry 

“SpeedUp�Network Simplification…”. Then, the following dialog box appears: 

Simplification Preparation:

Identification of the Simplification Range

Eliminate Trees

Level of the relative writeback criterion

Level of the absolute writeback criterion

Start the Simplification Module

Path, where the files for the new demands 

shall be written to

 

Figure 52. SpeedUp Dialog Box. 

It is very important to save the network model after every step and to restart SpeedUp. 

The path, where the current model is located on the hard disk, has to be inserted in the 

corresponding text-edit-box. It needs to finish with a backslash, “\”. 

Before any simplifications can be done, the simplification range needs to be identified 

with the button “Prepare Simplification”. Afterwards, the either tree structures can be 

eliminated (“Eliminate Branches”) or the static simplification can be applied (“Linearise 

and Simplify”). If a writeback criterion is necessary, it should be ticked and an 

appropriate level entered. Both criterions can be combined. 

To simulate a network model multiple times, the HARP solver has to be called as usual. 

The pop-down-menu beyond “Hazen-Williams”/ “Colebrook-White” has to be set to 

“Genetic”. A dialog box will appear and ask, how many times the model shall be run. It 

is very useful, to avoid saving the text output file. 
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1 Pipes with high resistance/ low conductance pose big problems when solving. They require far more iterations to meet the 

accuracy criterion of the solver than other pipes. 

1 The term “Static Simplification” appears in Swiercz (1995) and is used here for the approach of  Ulanicki et al (1996), as there is 

no term specified. 

1 The numbers without variable name and unit are the flows l/s. 

1 The black point in the bottom left edge in the screenshot is the cursor. 

1 The lowest linear pipe conductance of the original network is kept in the simplified one. It is seen as a lower limit to which small 

changes are allowed. Therefore, if the solver has no problems with the original network, it will have no problems with the 

simplified network, also. 

1 The percentage of loops refers to the secondary value axis, all others to the first one. 

1 The number of loops refers to the secondary value axis on the right hand side of the figure. 

1 A link can be expressed by one or more parallel pipes. 


