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Summary 

The Scientific report of Data Assimilation in Real-time modelling fulfils the 
requirements of Deliverable 3.6.2 within work package 3.6 of the PREPARED 
Enabling change project (EC Seventh Framework Programme Theme 6). This 
report has evaluated existing methods to assimilate data and correct 
predictive errors to improve the application of numerical models in real-time. 
Though the optimisation of Urban Water Systems through real-time 
modelling has received increasing interest in recent years, such modelling 
approaches often do not consider multiple sources of system uncertainty that 
affect our ability to identify optimal operational solutions. 
 
Data Assimilation (DA) approaches have been applied and developed most 
widely in related scientific disciplines for updating model predictions in real-
time as new measurements become available. Kalman Filtering, notably 
Ensemble Kalman Filtering, and Particle Filtering are promising approaches 
for propagating system uncertainty in real-time. Such methods provide the 
potential to account for uncertainty in model structure and uncertainty 
associated with input forecasts. Similar to many of the methods reviewed in 
Hutton et al. (2011) for quantifying model uncertainty, such methods are 
potentially demanding computationally for Data Assimilation. 
 
Error-correction methodologies are relatively simple to implement and 
provide the ability to extend beyond DA approaches by reducing forecast 
error where observational data are unavailable. Such methods can implicitly 
account for a range of uncertainties provided these uncertainties are manifest 
in the deterministic model residual time-series derived off-line prior to 
application. Error-correction has been applied to update system states; 
however, the reviewed methods mostly provide deterministic corrections to 
output time-series, despite the methods themselves containing uncertainties.  
 
Joint state and parameter estimation approaches have also been developed 
where DA filters have been applied within calibration frameworks. A 
hierarchical approach for dealing with model uncertainty combining model 
calibration, data assimilation and error-correction applied at different 
temporal scales, blending different representations of uncertainty, may 
provide an optimal framework to account for uncertainty in real-time 
modelling and control in Urban Water Systems. Although the methods 
presented here, as well as the techniques and methodologies that will be 
implemented in Task 3.6.2 can be considered as generic, the final selection of 
the methodologies to be applied depends also on the specific requirements of 
the PREPARED cities selected for demonstration. 
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1 Introduction 

This report fulfils the requirements of Deliverable 3.6.2 within work package 
3.6 of the PREPARED Enabling change project (EC Seventh Framework 
Programme Theme 6). The report discusses the application of modelling tools  
in real-time, and evaluates data assimilation techniques for improving the 
accuracy of model predictions. Data assimilation techniques are much less 
developed in UWS modelling than methods for uncertainty quantification. 
The report will therefore review and evaluate a number of data assimilation 
techniques developed and applied more widely in related scientific 
disciplines, and assess their efficiency in improving model accuracy. 

1.1 Introduction to PREPARED 
 

Projected climatic change over the 21st century is predicted to manifest itself 
regionally through changes in water availability; Northern Europe and 
Southern Europe are projected to experience, respectively, an increase and 
decrease in mean precipitation, as well as an increase in the magnitude and 
frequency of extreme events (e.g. extreme precipitation events for Northern 
Europe and drought conditions in Central and Southern Europe; Christensen 
et al. 2007). Through impacts on the availability and quality of water in the 
water cycle (Figure 1), such changes will have direct consequences for what 
the World Health Organisation (WHO) considers the foundation of public 
health and development: the provision of drinking water and sanitation 
(WHO 2009). In Urban Environments drinking water is provided by the 
Water Distribution System (WDS) to consumers and industry, and sanitation 
chiefly provided for by the sewer network (Figure 1.). Adaptive strategies are 
required to reduce the vulnerability of UWS to climatic variability and 
change. 
 
The aim of PREPARED is to show that the water supply and sanitation 
systems of cities and their catchments can adapt and be resilient to the 
challenges of climate change. In order to respond to the risks posed by 
climatic change, the impacts of which are currently surrounded by 
uncertainty, adaptive strategies are required that move beyond the current 
approach of building larger infrastructure that cannot be relied upon to 
deliver acceptable risk over the medium timescale. Strategies are required to 
better manage potential risk. Strategies that can be optimised as new 
information becomes available to avoid two potential scenarios: First, the 
potential for under-investment as climate change impacts are under-
estimated; Second, the potential for over-investment, and an unnecessary use 
of resources. 
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PREPARED, which has taken an industry/end-user driven approach will 
seek to build the resilience of UWS, initially in a number of demonstration 
cities, in two primary ways:  
 

1. Through optimisation of existing water supply and sanitation 
systems, to postpone investments in new infrastructure until 
investment risks are lower as more knowledge is available. 

2. Second, in the case where optimisation is not sufficient, PREPARED 
will provide guidance and produce frameworks to aid utilities in 
building more resilient water supply and sanitation systems. 
 

 

 
 
Figure 1. Position of the Urban Water System (Grey Shaded Region) within 
the water Cycle. 
 
 
Developing approaches for optimal management of UWS requires a detailed 
understanding of how such systems operate. Conventional management 
approaches have typically focussed on solving isolated technical problems, in 
what has been termed a “command and control” approach (Pahl-Wostl et al. 
2007). Dealing with problems in such a way neglects system complexity and 
the potential for complex system feedbacks that may result in unexpected 
consequences (Pahl-Wostl 2007). Such management therefore represents poor 
management of risk and resources. Although subjectively defined, risk may 
be generally considered as the consequence combined with the probability of 

Waste Water 
Treatment

Rainfall Sewer
Network

Springs and 
Groundwater

Water 
Distribution

Consumer

Agriculture Waste Dumps Industry

MarineRiverReservoir/Lake

Diffuse Source
Irrigation

Run-off CSO
Effluent

Water Intake

Water 
Production

CITY

Water Intake Effluent
Diffuse Source

Run-off

Industry



 

Real-time modelling and Data Assimilation for improving model predictions  
© PREPARED - 9 - 15 april 2010 

 

occurrence of a particular event. The identification and potential reduction of 
risk associated with Urban Water System management (PREPARED work 
package 2.3) requires a deeper, holistic understanding of inherent system 
complexity and uncertainty to better inform an understanding of the 
probability of event occurrence. 
 
An essential and innovative aspect of PREPARED is the development of a 
toolbox for real time monitoring and modelling (Work area 3.6). The toolbox 
is required to increase the technological capacity of existing water supply and 
sanitation systems to deal with changes in the quality and quantity of system 
input resulting from climatic change, alongside potential changes in demand. 
Such demands call for an integrated real time control strategy, supported by 
monitoring and modelling approaches, to provide decision support in the 
face of inherent system uncertainty. Towards this end, Work package 3.6 will 
investigate methodologies for uncertainty quantification in UWS modelling, 
and identify possible steps to reduce uncertainty through real-time 
modelling, calibration and data assimilation.  
 

1.2 Report Structure 
 
Section 2 defines types of uncertainty that affect modelling from a systems 
perspective. In order to understand the potential application of different 
methods for quantifying and reducing uncertainty in UWS, Section 2 first 
reviews the types of uncertainty affecting our understanding, and therefore 
ability to model UWS. 
 
Section 3 provides some context to understand the potential application of 
Data Assimilation methods in UWS, and reviews the aims and drivers real-
time modelling, and issues of model forecasting. 
 
Section 4 reviews Data Assimilation methods and Error-Correction methods 
developed and applied specifically to deal with quantifying and reducing 
uncertainty in (near) real-time. The methods considered in Section 4 are those 
considered most applicable for dealing with uncertainty in Real-time WDS 
modelling.  
 
Section 5 provides a summary of the conclusions of the report. 
 
Section 6 References. 
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Section 7 Appendix A. Provides a tabular classification of uncertainty 
methodologies that may be applied in UWS modelling, extending the Table 
presented in Hutton et al. (2011). 
 
Section 8 Appendix B. Provides a Glossary of terms to fascilitate 
understanding of the issued and methods presented in the report, extending 
the glossary presented in Hutton et al. (2011). 
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2  Uncertainty In Urban Water Systems 
Models 

2.1 Introduction 
 
Uncertainty may be defined as a state where we have incomplete knowledge 
of a system. Uncertainty is typically divided into aleatory uncertainty, which 
refers to irreducible natural variability in measurements (e.g. rainfall; Hall 
2003; Helton and Burmaster 1996); and epistemic uncertainty, which results 
from incomplete system knowledge, often pertaining to numerical system 
models.  
 
In order to address uncertainty when modelling UWS in real-time, three areas 
need to be considered: understanding, quantification, and reduction of 
uncertainty (Liu and Gupta 2007). The report that fulfils the requirements of 
REPARED deliverable 3.6.1, entitled: Uncertainty Quantification and Reduction 
in Urban Water Systems Modelling: Evaluation Report (Hutton et al. 2011), 
provides a thorough review of existing uncertainties affecting our ability to 
accurately simulate UWS. This section provides an abridged version of 
Section 2 of Hutton et al. 2011 to provide context, and aid in understanding 
the potential application of the real-time approaches reviewed in this report.  

2.2 Types of Uncertainty 
 
From a systems theory perspective, a model may be considered as composed 
of six different components (Figure 2): 
 

 
Figure 2. A schematic systems representation of model components  
(modified from Liu and Gupta 2007). 
 
where B is the system boundary; U=(u1,...,un) and Y=(y1,...,yn) represent model 
inputs and outputs, with length n, as fluxes of mass or energy into and out of 
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the system; x0 represents the model initial conditions; θ=(θ1,...,θm)  are model 
parameters (e.g. pipe roughness) with length m, which are typically 
considered time invariant during simulations, but in real-time applications 
that seek to reduce uncertainty, they may be time varying (Moradkhani et al. 
2005b); X=(x1,...,xn)  represents model system states (e.g. pressure or head in a 
WDS model), which are stored in the system boundary, and alongside Y, 
evolve over time when the model system equations (f) are conditioned on 
model parameters and inputs: 
 
Y, X = 푓(U,푥 ,휃,퐵)                                                                                                             (2.1) 
                                                                                               
 
The model equations (f) may be considered as a formalised mathematical 
representation of reality that seek to make the correct mapping from system 
inputs to states and system outputs. In general, there are three different types 
of model uncertainty, which incorporate the model system components 
described above: Structural uncertainty (B, f) refers to errors in the 
mathematical representation of reality, and is a form of epistemic uncertainty; 
Parameter uncertainty reflects uncertainty in the value of variables used in 
equations to represent model system components (e.g. pipe roughness; θ); 
Measurement/data uncertainty refers to uncertainty in the quantities used to 
define initial conditions (x0), model inputs (U) and observations used to 
evaluate model predictions (either system states (X) or outputs (Y)). A first 
step towards reducing the effects of these sources of uncertainty on 
predictions of system states (X) and outputs (Y) is to first understand sources 
of uncertainty in UWS, and uncertainties in the models typically used to 
represent them. 
 

2.3 Sources of Uncertainty in Water Distribution Network modelling 
 
The primary objective of the Water Distribution Network is to provide clean, 
potable water at sufficient pressure and volume for end users (domestic and 
industrial). To meet this demand a WDS typically consists of a number of 
links (pipes, pumps and valves) that are joined at junction nodes, and control 
distribution of drinking water, via storage tanks, from a water production to 
the consumer. Under normal design (steady state conditions), the network 
must be capable of supplying anticipated demands with adequate pressures. 
Network models that seek to represent the WDS consist of a collection of 
pipes, pumps and valves, which are connected together at a series of nodes, 
where consumer demand is specified. The detail with which the original 
WDS is represented in both time and space depends on the purpose to which 
the model is to be used. For a given demand (pattern) the system equations 
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conserving mass at junction nodes and energy along pipes may be solved for 
steady state and extended period simulation (e.g. EPANET2; Rossman 2000). 
In pressure deficient situations resulting from leakage or fire flow, pressure 
driven modelling approaches may be applied where the assumption that 
demand is met at each node is inadequate (Giustolisi et al. 2008). In the case 
where the transition between hydraulic conditions is important the governing 
equations of mass and momentum need to be solved to simulate pressure 
wave propagation (Boulos et al. 2004; Jung et al. 2007). A number of 
uncertainties affect our ability to model UWS: 
 

 Skeletonisation involves the removal of pipes that for computational 
constraints and reasons of parameterisation are not considered 
essential to model system performance. For steady-state simulations 
skeletonisation may not have large impacts on model performance; 
however for surge analysis such simplification may inadequately 
represent maximum surge head by neglecting dead ends and high 
elevation nodes (Jung et al. 2007). Skeletonisation by trimming also 
results in the need to re-allocate demand, which results in 
modifications to pipe velocities, the potential for inaccurate 
contaminant consequence assessment (Bahadur et al. 2006), and may 
incorrectly assume sufficient pressure at every trimmed location in the 
network (Walski et al. 2003). 
 

 Demand uncertainty consists of aleatory uncertainty surrounding the 
natural variability of consumer demand, which varies over a range of 
different timescales (Buchberger and Wells 1996; Davidson and 
Bouchart 2006; Herrera et al. 2010) reflecting work, commercial and 
domestic usage throughout the day and week, and changes in 
response to seasonal and climatic changes over the year. There is 
significant epistemic uncertainty surrounding understanding of this 
inherent system variability, which is most often constrained through 
measurements of system state (e.g. Davidson and Bouchart 2006), or 
by predictive models (Cutore et al. 2008; Herrera et al. 2010), which 
are themselves uncertain. Demand is typically expressed at network 
nodes; however, consumers extract water along the pipes within the 
network. Although this error may be small relative to uncertainty 
surrounding the actual amount of demand, it may lead to errors in the 
prediction of system head loss (Giustolisi and Todini 2009).  
 

 Pipes form an integral part of the WDS, and their Roughnesses, 
alongside demand, are one of the most significant sources of 
uncertainty in WDS modelling. Pipe roughness changes over time due 
to pipe deterioration and the deposition of material (Boulos et al. 



 

Real-time modelling and Data Assimilation for improving model predictions  
© PREPARED - 14 - 15 april 2010 

 

2004), which reduced pipe diameter. Pipe deterioration depends on a 
range of factors, including material and water quality, and thus 
roughness if difficult to predict with increasing pipe age, not least due 
to the difficulty of measurement of what is an effective parameter with 
limited physical meaning. Pipe roughness values, like nodal demand 
patterns are often grouped to reduce the dimensions of the calibration 
problem (Mallick et al. 2002). However, as the number of parameters 
reduces, so does model accuracy in representing true variability that 
controls the functioning of the WDS. 
 

 Pumps, valves and tanks are key system components allowing 
managers to control the movement of water in the distribution 
network. In practise pumps do not typically operate at the curve 
efficiency supplied by the manufacturer (Walski et al. 2003), and over 
time performance will deteriorate due to cavitation and wear (Hirschi 
et al. 1998). Valves control the flow of water through the WDS, and 
operate in different ways depending on their purpose. The effect of 
some valves may be adequately represented by a minor loss 
coefficient, and potentially incorporated into a pipe roughness 
coefficient, emphasising the effectiveness of pipe roughness values. 
Tanks store water in the distribution network, and are characterised 
by a rating curve between head and storage volume.  
 

 Water Quality predictions are described by the advection-dispersion-
reaction equation (Blokker et al. 2008). Given water quality is 
dominated by advective transport (Pasha and Lansey 2005), the 
dispersion terms are neglected in EPANET2 (Rossman 2000). Whilst 
this is a reasonable assumption for turbulent flows, dispersion is 
important in laminar flows (Blokker et al. 2008). Further, the perfect 
mixing assumption applied at network junctions in EPANET2 is 
inaccurate (Austin et al. 2008; Romero-Gomez et al. 2008), and may 
lead to erroneous predictions of pollutant concentration. Underlying 
hydraulic model uncertainty, resulting from demand uncertainty and 
skeletonisation, affects the velocity predictions required for predicting 
the fate of contaminants, chlorine decay rates (Menaia et al. 2003), and 
for quantifying the population actually affected by a given 
contamination event may be incorrect (Bahadur et al. 2006). Relatively 
little attention has been given to joint calibration of WDS and water 
quality models (Savic et al. 2009). Pipe wall chlorine decay depends on 
the pipe age and material, which as for roughness is difficult to 
quantify for all network pipes, and results in pipe grouping 
(Munavalli and Kumar 2005). 
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2.4 Sources of Uncertainty in Urban Waste Water Systems Modelling 
 
UWWS consist of three principal components: Sewer System, Wastewater 
treatment plant, and receiving water body (Figure 1), and have been designed 
to complement the WDS by mitigating flooding, and providing good 
sanitation (Korving et al. 2003). Many major cities around the world have 
combined sanitary and storm-water flows. During rainfall events the WWTW 
has to deal with a larger volume of relatively dilute wastewater, increasing 
processing costs, and the potential for Combined Sewerage Overflow (CSO) 
discharges, with potentially detrimental impacts on water quality (Casadio et 
al. 2008). 
 
Traditionally, each component of the UWWS was managed separately, often 
by a different company, with different management aims (Devesa et al. 2009).  
A number of approaches moving towards integrated modelling of UWWS 
have been developed both in the research literature (Butler and Schutze 2005; 
Vanrolleghem et al. 2005), and commercially (e.g. WEST and SIMBA; Rauch 
et al. 2002), to address the concerns for the vulnerability of water quality 
(Beck 2005), as exemplified by the introduction of the Water Framework 
Directive (WFD; Bloch 1999); and second to meet public expectation in 
attaining higher levels of service (Pahl-Wostl 2005). Such models are required 
to facilitate incremental adaptation (Butler and Parkinson 1997), and help 
optimise the performance of existing UWWS, by explicitly accounting for 
interactions between different components of the system (Butler and Schutze 
2005). However, the integrated UWWS is complex, involving a number of 
epistemic and aleatory uncertainties (Benedetti et al. 2008; Korving et al. 
2003): 
 

 Rainfall represents the key input to UWWS during Wet Weather Flow 
(WWF), and during storm events may cause sewers to exceed their 
hydraulic capacity, resulting in surcharge and CSO discharges. As in 
hydrological applications (Yatheendradas et al. 2008), rainfall 
uncertainty may dominate over model and parameter uncertainty for 
the prediction of sewer flow emissions (Willems 1999). Aleatory 
rainfall uncertainty relates to natural temporal variability in rainfall 
over annual timescales reflecting seasonal variations and climatic 
circulation patterns (Rodriguez-Puebla et al. 1998); over daily 
timescales due to convective processes in the atmosphere (Kutiel and 
Sharon 1980; Kutiel and Sharon 1981); and over storm event timescales 
relating to the movement of clouds/rain cells  (Morin et al. 2006). 
Rainfall also varies spatially over large scales relating to climatic 
patterns (e.g. over the Iberian peninsula; Rodriguez-Puebla et al. 1998) 
and continental topography (Jang 2010); over sub-catchment scales in 
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response to local topographic forcing  (Chaubey et al. 1999)  and wind 
shelter (Sevruk and Nevenic 1998);  and over short distances  (102m) at 
event timescales in response to the spatial structure of convective 
rainfall cells (Faures et al. 1995). Spatial patterns in rainfall may also 
be controlled by the presence of the urban area itself (Jauregui and 
Romales 1996; Rosenfeld 2000; Thielen and Gadian 1997).  

Epistemic uncertainties in rainfall measurements result from 
measurement errors and errors in the spatial and temporal resolution 
of the phenomena. Point rain gauge measurements are subject to both 
systematic errors (Ciach 2003; Rauch et al. 1998; Sevruk 1996; Sevruk 
et al. 1994; Sevruk and Nespor 1998; Stransky et al. 2007), and random 
errors (Rauch et al. 1998). Such measurements may not have a 
sufficient temporal resolution for accurate modelling (Aronica et al. 
2005), and require interpolation (Goovaerts 2000; Willems and 
Berlamont 1998). Rainfall radar has been used increasingly alongside 
point rainfall measurements (Vieux and Vieux 2005); however, the 
algorithm used to convert a radar signal to rainfall intensity often 
requires bias correction due to uncertain parameters (Vieux and Vieux 
2005), and runoff predictions may be sensitive to the resolution of 
radar measurements (Ogden and Julien 1994). Point gauge 
measurements are typically used for bias correction (Campolongo et 
al. 2007), which as discussed above are themselves uncertain.  

Many urban sewer systems are situated in wider hydrological 
catchments; there is considerable uncertainty surrounding the 
simulation of the rainfall-runoff process (Wagener et al. 2003), and 
even more uncertainty concerning the transport of sediment and 
pollutants during runoff, both from agriculture (Beven et al. 2005) and 
urban environments (Deletic et al. 2000). This is a particular problem 
for understanding the potential impacts of CSOs during wet periods, 
as the state of the river will be independently altered by rainfall-
runoff.   

 
 Dry Weather Flow (DWF) consists of flow outputs from domestic and 

industrial users into the UWWS (Figure 1). Similar to water 
consumption (demand) in the WDS, uncertainty in DWF is both 
aleatory, reflecting changing consumer inputs over different 
timescales. Domestic wastewater may be made up of contributions 
from a variety of different household appliances (e.g. WC, Shower), 
each with their own patterns of use that vary between weekday and 
weekend (Butler 1993; Friedler et al. 1996), and diurnally (Almeida et 
al. 1999). Aleatory uncertainty also results from different usage 
amongst different users (Wong and Mui 2007). 
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There is significant epistemic uncertainty in the nature of DWF 
from domestic properties, owing to the difficulty of measuring 
discharge volume and content per household. Actual volume and 
pollutant loads have been determined by consumer survey (Almeida 
et al. 1999; Wong and Mui 2007), coupled with appliance 
measurement for average usage and literature figures for different 
pollutants (Siegrist et al. 1976). 

 
 Sewer Systems, though initially designed to quickly removing storm 

water (Delleur 2003), cannot simply be seen as inert conveyors of 
material. Sewer processes are complex, with the following key 
components (Ashley et al. 1999): hydraulics, sediment transport, 
advection-dispersion and biochemical water quality processes (Figure 
10). Whilst the modelling of most of these components is well 
developed (e.g. St. Venant equations for sewer hydraulics) there are a 
number of significant problems in deriving empirical information, 
which constrains our ability to apply complex models (Ashley et al. 
1999): First, there are logistical difficulties of actually measuring 
certain processes within the sewer system; Second, even when such 
processes can be measured, economic or logistical issues prevent 
extensive distributed measurements; Third, extreme spatial and 
temporal variability in sewer systems poses difficulties for 
constraining parameter and system state uncertainty in distributed 
sewer models (Jack et al. 1996).  

Structural uncertainty, however, does exist in sewer system 
models, first, because of a lack of understanding of a number of 
processes. There is uncertainty regarding the nature of sediments in 
transport near the bed (De Sutter et al. 2003), and many existing 
models do not represent sufficient size fractions for sediment 
transport prediction, and cohesive sediment transport and deposition 
(Ashley et al. 1999). Second, model simplifications are necessary due 
to system complexity and computational resources (Fischer et al. 
2009), leading to known structural uncertainty. For example, 
simplifications of the fully dynamic 1D St Venant equations have been 
applied to sewer systems, in addition to conceptual store models 
(Vaes and Berlamont 1999). 

 
 Waste Water Treatment Works (WWTW) represent a number of 

different components for deriving clean water, including a clarifier,  
an active sludge model, hydraulic model, oxygen transfer model, and 
sedimentation tank model. The WWTW is subject aleatory input 
uncertainties associated with dry weather flow and rainfall input, as 
well as potential modification of flow volume and quality in the sewer 
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system due to sewer residence times and within sewer processes 
(Nielsen et al. 1992; Van Veldhuizen et al. 1999).  

There are difficulties in applying complex WWTW models 
(Gernaey et al. 2004) due to parameter demands that are often 
substantial and difficult to constrain (Sin et al. 2009).  For example, 
parameters governing the active sludge process are often determined 
from laboratory studies (Van Veldhuizen et al. 1999), which may not 
be representative of field conditions. Further parameter uncertainty 
may occur when models, which are often calibrated for dry flow 
conditions, are applied to wet flow conditions (Gernaey et al. 2004).  
Black-box models, calibrated based on input and output data may 
provide better system representations in cases when white-box 
models fail to correctly describe all system dynamics (Gernaey et al. 
2004). Only in particular cases are hydraulic models applied explicitly 
to simulate flow through reactors (De Clercq et al. 1999), which are 
typically assumed instantaneous (Rauch et al. 2002). Further details of 
structural uncertainties in the WWTW may be found else ware (e.g. 
Gernaey et al. 2004; Rauch et al. 1999). 
 

 Rivers are the primary receiving water bodies for many UWWS, and 
are vulnerable to oxygen depletion and eutrophication owing to sewer 
and WWTW effluent nutrient loads (Harremoes and Rauch 1999). 
Rivers have the same general input and structural uncertainties as 
described for sewer systems, in addition to uncertain water volume 
(and quality) derived from non-urban sources (e.g. agricultural;Bilotta 
and Brazier 2008; Bilotta et al. 2008). Issues surrounding epistemic 
uncertainties in river models are similar to those in sewer system 
models (see also: Reichert et al. 2001; Reichert and Vanrolleghem 
2001); model complexity may be increased to reduce structural 
uncertainty, however this comes at the expense of needing to 
constrain more parameters, which due to data limitations are 
themselves uncertain. If model structural complexity is reduced to a 
simpler conceptual approach it is often difficult to infer the physical 
meaning of model parameters, which require sufficient data for 
calibration. 

Despite river water quality being one of the key policy drivers 
to evaluate UWWS performance, data relating to the relationship 
between water quality and river properties, such as ecology, is often 
lacking, because knowledge of such processes in uncertain (Bilotta 
and Brazier 2008; Borchardt and Statzner 1990). For example, different 
organisms respond differently to certain flow dynamics/exposures, 
and may have different recovery times. The determination of 
ecologically meaningful hydrological parameters and thresholds is 
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difficult owing to nonlinear dynamics and multiple causes (Groffman 
et al. 2006), and limited to specific case studies (Borchardt and 
Statzner 1990). Furthermore, traditional measures of pollution impact 
(emission standards), such as the frequency or volume of CSO spill 
(Lau et al. 2002), may not be compatible with measures of stream 
water quality standard (Freni et al. 2010), nor reflect actual pollution 
(Lau et al. 2002). 

 

2.5 Summary 
 
Models of both WDS networks and UWWS are subject to structural, 
parameter and data uncertainties. Natural variability, particularly in demand 
and dry weather flow, represent consumer driven uncertainties, whilst 
UWWS also have to deal with natural rainfall variability. There are further 
difficulties in measuring such phenomena accurately in both time and space. 
Models applied to UWS have known structural uncertainties that often must 
be tolerated for computational reasons and data constraints. Further, the 
difficulty of obtaining distributed measurements results in uncertain and 
often poorly constrained model parameters. Formal methods are required to 
deal with this uncertainty in real-time approaches that may be employed to 
optimally manage UWS. 
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3 Real-time Modelling in Urban Water 
Systems  

3.1 Introduction 
 
Real-time refers to a state where data referring to a system is analysed and 
updated at the rate at which it is received (i.e. at the rate at which the system 
operates). Real-time modelling (also referred to as online modelling) refers to 
the process of employing numerical models to make predictions about 
current or near future system states (X) and outputs (Y) based on newly 
received (and forecasted) data. Real-time modelling is employed in a range of 
environmental fields, including meteorology (Golding 2000; Thorndahl et al. 
2010), hydrology (Cloke and Pappenberger 2009; Collier 2007), and in UWS 
(Fu et al. 2008; Shang et al. 2006), typically for one of the following purposes: 
 

 To provide warnings of future events (e.g. flash flooding) such that 
evacuation and mitigation can take place (Penning-Rowsell et al. 
2000).  

 To inform management of future system states and potential 
anomalies, such that control intervention of system states and outputs 
can take place (Ingeduld and Turton 2002; Shang et al. 2008).  

 To explore a range of possible control strategies such that the 
optimum control solution that minimises some function (typically a 
system property such as CSO discharge, or operational cost) is 
implemented (Darsono and Labadie 2007; Rao and Salomons 2007). 

 
Real-time modelling may also be referred to as online modelling (Machell et 
al. 2009) as data capture and processing is directly coupled with model 
application. This approach is in contrast to many of the calibration 
approaches considered in Hutton et al. (2011), in which model application 
may be considered offline, in that the models are applied using existing time-
series, typically for model parameter calibration prior to application. In this 
sense offline modelling may be seen as a complementary step prior to the 
online model methodologies considered in this report. Section 3 of this report 
will provide some context for the application of real-time modelling in UWS. 
First the section will consider the drivers of real-time modelling (3.2) and the 
issues surrounding real-time control in UWS (3.3).  Section 3 will also discuss 
data collection in real-time (3.4), and forecasting and real-time modelling 
issues (3.5) that provide the context for the potential application of the Data 
Assimilation and Error-correction techniques considered in Section 4.  
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3.2 Drivers of Real-Time Modelling  
 
The application of real-time modelling in UWS for water management has 
received growing interest in the research literature in a range of European 
countries including the UK (Machell et al. 2009), Denmark (Harremoes and 
Rauch 1999) Germany (Schroeder and Pawlowsky-Reusing 2005), France 
(Stinson et al. 2000), Belgium (Vanrolleghem et al. 2005), and Spain (Ocampo 
Martinez 2007), and also in the U.S.A. (Darsono and Labadie 2007) and 
Canada (Pleau et al. 2005). The increase in application of real time modelling 
has been driven by a need for greater efficiency of UWS system operation to 
meet a number of system demands. 
 
Greater management of UWS is required to meet the demands imposed by 
policy. In the context of UWWS the European Water Framework Directive 
(Bloch 1999) requires greater integration of catchment management, and 
improved qualitative and quantitative water quality by 2015. Meeting these 
requirements means a reduction in the quantity and improved quality of 
water derived from the sewer network. Similar Guidelines and requirements 
have also been implemented in the United States by the Environmental 
Protection Agency, including the nine minimum controls to have been 
implemented in 1997 (USEPA 1995a), as well as longer term CSO control 
plans (USEPA 1995b), which include modelling of the combined sewer 
system. 
 
Both UWWS and WDS also have to meet demands of regulatory authorities, 
such as Ofwat in the UK, public expectation of a high quality service (Pahl-
Wostl 2005), and when the management companies of such systems are 
privatised, shareholder satisfaction (Ogden and Watson 1999). Such demands 
are often competing, as in general improved water quality, both that derived 
for potable consumption and that leaving the sewer system, comes at a cost. 
Further, the driving factors considered here are closely related; for example, 
adherence to the WFD will come at a cost to the water industry (Ofwat 2005), 
a cost ultimately borne by consumers. Other drivers include greater concern 
of the potential for deliberate contamination events, which has increased 
research into real-time monitoring and modelling of water quality in WDS 
(Davidson et al. 2005; Panguluri et al. 2005). Effective and economic 
monitoring and optimisation of system performance is required, which is 
currently delivered by Real-Time Control (RTC). 
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3.3 Real-Time Control 
 
Real-Time Control (RTC) refers to the process by why system states are 
monitored in real time, and regulatory devises are operated in response to 
measurements to control the system and its states (Figure 3; Schutze et al. 
2004). The main objective RTC is to maximise the use of regulatory devises 
(actuators), such as pumps, gates, valves, and treatment plants to meet 
customer and regulatory demands at minimal costs.  
 
In the context of WDS, RTC control is required in WDS to reduce pumping 
costs (e.g. by filling tanks in low tariff periods) whilst maintain adequate 
system pressure to meet fluctuating consumer demands (Davidson and 
Bouchart 2006). Higher system pressures than necessary are normally 
maintained by controllers due to current control limitations, which leads to 
higher leakage losses from the system (Jamieson et al. 2007). Further, pump-
scheduling for system control typically takes the form of lapsed-time control 
in response to average demand curves over a 24 hour period (Rao et al. 2007), 
which does not take full advantage of on-line monitoring data. 
 
 

 
Figure 3. Schematic illustration of real-time system control. Feed-forward 
(disturbance measurement) and feedback (process measurement) control 
loop. Simple arrows indicate data flow, double arrows indicate 
hydrodynamic action. Bold letters indicate hardware and italic letters indicate 
variables (Schutze et al. 2004). 
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In UWWS the volume and quality of CSO discharge needs to be minimised 
by optimally using regulatory devises (e.g. gates, weirs, pumps and treatment 
works) to manage the flux of sewerage within the wastewater system, 
through for example, inline storage (Darsono and Labadie 2007). There are 
three basic approaches for RTC (Vanrolleghem et al. 2005): volume-based, 
pollution-based and emission based. Although volume-based approaches do 
not necessarily minimise pollution impact (Lau et al. 2002; Rauch and 
Harremoes 1999), a relative dearth of data means volume-based approaches 
are often the most practical approach.  
 
Although state of the art control and monitoring equipment has been 
installed in some sewerage systems (e.g. Branisavljevic et al. 2010; Stoianov et 
al. 2006), data have often been considered underused (Weywand 2002), 
without demonstrating the full potential of on-line monitoring data such as 
that provided by Supervisory Control And Data Acquisition (SCADA) 
systems (Kang and Lansey 2009). Over recent years the  cost and performance 
benefits of real time control have been demonstrated (Broks et al. 1995; 
Campisano et al. 2000; Entem et al. 1998), with implementation in some 
European Cities, including Vienna (Fuchs and Beeneken 2004), Barcelona 
(Ocampo Martinez 2007), and cities in Germany (Weywand 2002), and the 
development of guidelines and predictive tools to demonstrate the benefits of 
RTC (Messmer et al. 2008; Schutze et al. 2008).  In recognition of the benefits, 
real-time control of WDS has also been realised in many cities worldwide 
(Panguluri et al. 2005; Patterson et al. 2005; Shin et al. 2009; Zhao et al. 2005). 
 
It has been argued that in many current systems much of the RTC 
management is limited to local control (Ocampo Martinez 2007; Pleau et al. 
2005; Schutze et al. 2004). There has been an increased recognition, 
particularly over the last decade, of the need for integrated system control in 
the research literature to meet the aforementioned demands for economic and 
efficient system performance of UWS (Butler and Schutze 2005). Integrated 
control in the UWWS requires integration of WWTW, sewer system and river 
data to optimise controls of, for example, inline sewer storage in response to 
wider system states and controls (Darsono and Labadie 2007). Finding 
optimal solutions for integrated systems control is a more complex, and a 
more computationally demanding problem than localised optimisation, 
because of the large number of variables that can potentially influence system 
state. However, at the same time, a larger number of control options, and the 
potential to observe system state upstream of a given location provides 
greater potential to optimise system performance. Such operation may 
therefore require a move beyond heuristic trial-and-error control strategies 
based on the experience of the operator.  
 



 

Real-time modelling and Data Assimilation for improving model predictions  
© PREPARED - 24 - 15 april 2010 

 

In contrast to ‘natural’ systems such as hydrological catchments, UWS are 
essentially manmade with built in control structures for system optimisation. 
Therefore in addition to real-time modelling approaches that forecast future 
system states, models have become increasingly important to investigate the 
implications of different control strategies. Model-based Predictive Control 
(MPC; Fu et al. 2008; Rao and Salomons 2007; Rauch and Harremoes 1999) 
employs models to find the optimal control decision that best meets future 
demands on the system. Such modelling can take the form of offline 
modelling, where models are applied to identify optimum system control 
strategies based on integrated system models (Butler and Schutze 2005; 
Jamieson et al. 2007; Rauch et al. 2002). Such models may be applied to 
determine rules for rule-based system control (Fuchs and Beeneken 2005), or 
through exploration of a range of possible operational scenarios based on 
system optimisation with reference to cost and performance.  
 
 

 
 
Figure 4. Flow diagram showing the location of simulation modelling in real-
time system control. The large grey box contains the processes that must be 
conducted between receiving system data and modifying actuator settings. 
The forecast model may be applied iteratively in an optimisation procedure to 
find the best control scenario, or once to predict future system state and 
inform a rules-based decision strategy. 
 
 
As an alternative to offline modelling, MPC models have also been applied 
online in real-time to forecast both future system states, based on current 
conditions and forecasted drivers (e.g. water demand or rainfall; Fuchs and 
Beeneken 2004; Rao and Salomons 2007), or to explore in real-time the 
implications of future operational scenarios, to seek the best management 
condition (Figure 4). The processes contained within the grey box in Figure 4 
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are the stages that must be conducted between receiving system information 
and producing system forecasts to inform control decisions. As indentified in 
a number of studies, the time available for system modelling is constrained, 
which has lead to the application of alternative models (Rao and Salomons 
2007). Perhaps in part because of these temporal constraints, the application 
of Data Assimilation techniques for dealing with uncertainty in real-time 
modelling has been lacking. Of central concern for the application of 
modelling in real-time are the spatial extent, frequency and quality of data, 
and the need for efficient, automated methods for processing sensor data. 
 

3.4 Real-Time Data Acquisition and Processing 
 
Data acquisition in real time, from measuring the given phenomenon (e.g. 
discharge or a given water quality parameter), to providing data for 
modelling and control decisions involves a number of stages: 1) Sensing the 
given phenomena; 2) converting this measurement, typically by calibration, 
into the property of interest; 3) Transfer the data to a central receiver/storage 
device; 4) anomaly detection and data processing. 
 
A wide variety of devices are available for measuring properties of the flow 
field. Many of these devices do not measure directly the property of the flow 
field of interest, and require calibration. Of wide application in Sewer systems 
and WDS is the measurement of the physical flow properties to quantify 
discharge volumes. Measuring free surface flow in sewer systems may be 
achieved by combining velocity measurements with flow depth 
measurements (Fulford and Gonzalex-Castro 2009). Errors exist in such 
measurements due to sediment deposition induced changes in cross-section 
area (Larrarte and Chanson 2008), and for example, uncertainties in the 
representativeness and settings of Doppler velocity measurements (Larrarte 
2006; Larrarte et al. 2008).  
 
A number of different sensors have also been applied to measure water 
quality parameters, including the application of UV/VIS/NIR spectrometers 
in sewers (Gruber et al. 2005; Stumwohrer et al. 2003), rivers (Barillon et al. 
2010) and in WWTW (Rieger et al. 2008), and the application of turbidity 
probes (Joannis et al. 2008). Many sensors suffer reliability problems because 
of the corrosive and destructive nature of the monitoring environments, with 
regular cleaning often required to prevent clogging (Gruber et al. 2005).  
 
Spectrometers, like other sensors, require calibration to relate the signal 
received to a water parameter of interest. Manufacturer and laboratory 
calibration prior to installation may be inadequate to represent the specific 
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conditions in the location of sensor deployment; calibration for local 
conditions such as temperature for turbidity probes may be required (Joannis 
et al. 2008). Further, in local application noise may dominate measurements 
(Maribas et al. 2008), and measuring devices may not adequately deal with 
shifts in the wastewater matrix resulting from different event timings and 
magnitudes (Stumwohrer et al. 2003). Also drift in sensor calibration may 
occur, which may result in the need for regular recalibration (Rieger et al. 
2008). Methods are required to quantify such measurement uncertainties 
(Bertrand-Krajewski et al. 2003). Recent advances in online drinking water 
quality monitoring are reviewed in Storey et al. (2011). 
 
Data transfer for real-time application has received more interest in recent 
years following technological advances in telemetry, and an increased interest 
in integrated system control. Such control requires communication of large 
amounts of data over potentially long distances, and synchronisation of such 
data for further application. A range of methods have been employed to 
communicate information from sensors, including telephone lines, radio, 
satellite, WAP wireless networks and the internet (Castro et al. 2008; 
Ruggaber et al. 2007; Stoianov et al. 2006). A key difficulty is the power 
required, often in remote and difficult to reach locations (e.g. in underground 
pipes), to communicate the volumes of collected data for real-time 
application. Recent advances in technology include local low energy data 
transmission from sensors to above ground data gatherers via Bluetooth, 
which then manage time synchronisation and control long range 
communication to servers where power resources are greater (Stoianov et al. 
2006). Such technologies though not widely applied and often in stages of 
development, are often low cost. Such developments will facilitate wider 
application of real time data collection, and application of real-time 
modelling. 
 
Given the potential problems in measuring data, validation and processing 
are essential steps to perform prior to utilising data derived from sensors for 
real-time modelling application, as there may be a large redundancy in data 
collected (Schilperoort et al. 2008). Procedures for removing zero values, 
filling in single gaps and double entries may be readily automated and 
executed on data time-series (Schilperoort et al. 2008), and are often required 
prior to application of more advanced techniques for data validation 
(Branisavljevic et al. 2010). Recent developments for automatic detection of 
anomalous data include application of Artificial Neural Networks (ANN), 
and context classification of data prior to detection (Branisavljevic et al. 2009).  
Romano et al. (2010) applied a wavelet approach to de-noise WDS time series 
data. Such methods are required as manual (visual) techniques, though 
potentially effective, are not suitable for real time application. 
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3.5 Real-Time Model Forecasting 
 
The basis of applying models in real-time control is to make predictions of 
future events (forecasts) and to inform controllers of the best strategies for 
dealing with those future events. Although model forecasting is applied in a 
range of scientific fields, some generic issues govern the applicability of 
different methods for model forecasting (see Collier 2007; Pappenberger et al. 
2005; Todini 2004). For a forecast to be useful it must made before an 
appropriate time horizon (also termed operating horizon) for the system in 
question. This horizon is determined by the time required to initiate control 
actions to mitigate the impacts of a forecasted event. For example, if demand 
in a WDS is projected to increase, pump settings may be modified to fill 
storage tanks to meet this future demand, and if the warning is sufficiently 
early, this pumping may occur in low tariff periods (Salomons et al. 2007). 
Larger storage tanks provide some leeway in meeting future demands, which 
would reduce the necessary time horizon required to take action. Therefore 
the time horizon is specific to the control system in question.  
 
 

 
Figure 5. Schematic illustration of model forecasting. The forecast time is the 
time at which system modelling starts to predict future events or optimise the 
control strategy to be implemented before the time horizon. If the natural lag 
in the system is longer than the modelling time plus time horizon (lag 2), then 
system observations can be used to drive the modelling. If the lag time is 
shorter than the modelling time plus time horizon (lag 1), then input forecasts 
(e.g. rainfall) are required to initiate the modelling optimisation in enough 
time prior to the time horizon.  
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The system forecast is made based on the input drivers of the system. In the 
case of UWWS the key driver of wet weather flow is rainfall, and for WDS, 
water demand. The system lag time (also termed Concentration Time) refers 
to the characteristic time for a response to an input at a given location in the 
system. If the lag time is greater than the time horizon plus the time required 
to generate the system forecast (Figure 5: Lag 2), then predictions based on 
existing measurements of input conditions up to the time of prediction can be 
made. However, if the lag time is shorter than the time horizon and the 
modelling time required to optimise the system (Figure 5: Lag1), in order to 
make timely predictions (i.e. before the time horizon) forecasts of input 
drivers, such as rainfall, will be required (Todini 2004). In urban catchments 
due to the presence of impermeable surfaces, lag times are typically lower 
than non-urban catchments, which results in the need for rainfall nowcasts 
(short term forecasts up to 6 hours ahead) for real-time model application. As 
outline above, the time required for demand forecasting in WDS depends on 
the specific system. As demand driven WDS models are typically in 
equilibrium, there is, in effect, no lag time in the system, which in addition to 
the difficulties of quantifying demand, means water demand forecasts are 
required for all WDS models.  
 

3.5.1 Rainfall Forecasting 
 
Errors and uncertainties associated with rainfall measurement have been 
outlined in Section 2.4; errors derived from uncertain rainfall predictions will 
propagate into hydrological models and models of UWWS (Achleitner et al. 
2008; Collier 2009). As catchment size increases, discharge is less sensitive to 
spatial and temporal rainfall uncertainty; however, in urban catchments, with 
short lag time responses (Berne et al. 2004), hydrographs are more sensitive to 
the temporal and spatial distribution of rainfall (Segond et al. 2007), as 
interconnected impervious surfaces decrease system response time (Mejia 
and Moglen 2010). Such conditions require finely resolved predictions of 
rainfall intensity for accurate flow prediction (Berne et al. 2004). 
 
A number of methods have been applied for forecasting rainfall. For short 
timescales (nowcasting) correlation based approaches have been developed, 
which evaluate consecutive rainfall radar images to derive vectors of the 
rainfall motion, which are used to propagate the radar image forward in time 
(Thorndahl et al. 2009; Verworn and Kramer 2005). Advanced correlation 
methods include filtering features of different scale for vector calculation, 
which slows the decrease in forecast skill over time (Van Horne et al. 2006). 
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Kalman filtering has also been applied to a rainfall field decomposed into rain 
cells (Barillec and Cornford 2009).  
 
A limitation of extrapolation approaches is the inability to simulate the 
development and decay of rainfall. Further, the uncertainty associated with 
radar based forecasts is not typically considered, and will be a combination of 
the uncertainties associated with relating radar reflectivity to rainfall, and 
those associated with the extrapolation itself. What is often required for 
effective management is the probability of extreme events, as to be dealt with 
effectively, such events may require more work and earlier warning (Figure 6; 
Fabry and Seed 2009). Uncertainty in nowcast rainfall has been investigated 
with the Generalised Likelihood Uncertainty Estimation (GLUE) procedure 
(Thorndahl et al. 2010). In application of a tracking approach for rainfall 
forecast in Linz, Austria, a forecast horizon of greater than 90 minutes 
introduced intolerable uncertainties into sewer flow predictions (Achleitner et 
al. 2008). Fabry and Seed (2009) conclude that for radar forecasts there will 
always be significant errors in short term high resolution forecasts for urban 
applications, which emphasises the need to account for uncertainty. 
 
The Nimrod system developed by the UK Met Office (Golding 1998) uses 
vector approaches to estimate motion for rainfall predictions up to an hour 
ahead, and for longer lead times combines the motion vectors and Numerical 
Weather Prediction (NWP) derived wind fields (Collier 2007). The prediction 
of convective rainfall fields, notably their genesis, has been identified as a 
problem, and recent finer 1-2km grid-scale models designed to better resolve 
convective processes have been developed (Roberts and Lean 2008). Fine 
resolution NWP have also been shown to better capture small scale 
orographic effects in comparison to coarser resolution models (Roberts et al. 
2009). The STEPS algorithm combines the advantages of NWP with radar 
extrapolation to provide an ensemble forecast (Bowler et al. 2006), which has 
been applied to predict sewer system flows (Liguori et al. 2011); forecast skill 
was shown to decrease with time and at smaller spatial scales (Schellart et al. 
2009). A difficulty identified with NWP, however, in the context of urban 
runoff prediction is that although the general pattern of rainfall may be 
produced, the displacement of heavy rainfall centres affects the ability to 
model the correct rainfall in small urban locations, with implications for 
uncertainty in sewer flow modelling (Rico-Ramirez et al. 2009). 
 
Recently, more attention has been paid to the use of ensemble NWP as a 
means to propagate rainfall uncertainty into the hydrological and runoff 
models. Because of the sensitivity of meteorological models to physical 
representation and initial conditions, meteorological forecasting uncertainty 
is likely to dominate over longer time-periods (e.g. 2-3 days) than is suitable 
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for deterministic forecasting. Due to computational constraints in generating 
an ensemble, and the lower resolution that ensemble models have in 
comparison to deterministic models, it has been argued that ensembles 
should complement deterministic forecasts (Gouweleeuw et al. 2005). Further, 
computational time in generating the rainfall forecast to drive an UWWS 
model will potentially take up time required to make the control decisions. At 
the same time, however, an understanding of the uncertainty may be 
important in determining the ‘optimal’ control setting, which over a long 
time-period in the face of driving condition uncertainty, may be one that 
minimises risk as opposed to that which produces the optimal deterministic 
control setting. Even in the case where quantitative predictions of rainfall are 
not exact, derived sewer control strategies (based on sewer model 
predictions) have been found to be more effective than using reactive control 
to measured system states (Verworn and Kramer 2005). 
 
 

 
Figure 6. Schematic illustration of the probability density distribution of a 
rainfall forecast for a specific event (solid line), the information generally 
provided by radar-based QPF systems (the average expected rainfall, 
indicated with an arrow), and the information usually needed by basin 
managers (the probability that an event exceeds specific thresholds, shaded 
areas (the probability that an event exceeds specific thresholds, shaded areas; 
from Fabry and Seed 2009). 
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3.5.2 Water Demand Forecasting 
 
Forecasting water demand in a given urban area is important over longer 
timescales for planning and system design (Froukh 2001), and over shorter 
timescales to assist managers in balancing the needs of different consumers. 
Short-term water demand forecasting (e.g. hourly and daily timescales) is a 
key component to facilitate real-time control decisions (Rao and Salomons 
2007). Water demand is a complex function of climatic, social, economic and 
cultural drivers (Arbues et al. 2003; Dandy et al. 1997). A number of data 
driven techniques have been developed for predicting future water demand 
using past observations of measured water demand, climatic variables and 
economic factors.  
 
A number of methods have been applied based purely on measured water 
demand and predict future water demand based on seasonal, weekly (e.g. 
weekend and weekday) and daily trends (Alvisi et al. 2007; Cutore et al. 2008; 
Nasseri et al. 2010; Quevedo et al. 2010; Shang et al. 2006). For up to 3 day 
lead times, historic daily demand was found sufficient to predict future 
demand in Bangkok, however over medium term prediction with up to 6 
month lead times, climatic as well as social variables (e.g. education status) 
were required to achieve optimal predictions (Babel and Shinde 2011). 
Climatic variables that have been used to predict water demand include 
temperature and rainfall (Asefa and Adams 2007; Babel and Shinde 2011; 
Gato et al. 2007; Herrera et al. 2010). Few studies have attempted to use socio-
economic factors as data are likely more difficult to measure and update.  
 
Methods applied for water demand prediction include Artificial Neural 
Networks (Babel and Shinde 2011; Cutore et al. 2008), Autoregressive models 
(asafa and adams; Molina barca), time-series models (Zhou et al. 2002), and 
more recently genetic programming (Nasseri et al. 2011), random forests 
(Herrera et al. 2010) and more advances regressive techniques including 
multivariate adaptive regression splines (Herrera et al. 2010). Jain et al (2001) 
2001 found that an ANN model outperformed regression and time series 
models for predicting weekly water demand. Herrera et al (2010), however, 
found than ANN models performed poorly in comparison to support vector 
regression for predicting hourly water demand in an urban area of south-east 
Spain. In other studies good forecasting has been achieved using time-series 
models (zhou, et al 2002). The relative performance of different models is 
likely to depend on the specific environment, the variables of interest, and the 
forecast time period, which limits assertions about general applicability. 
However, as recommended by Hererra et al (2010), regular model updating 
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(calibration) as new information becomes available, is likely to improve the 
performance of all models.  
 
Few studies have attempted to quantify the uncertainty associated with water 
demand predictions. Cutore et al (2008) applied the SCEM-UA algorithm to 
calibrate and quantify the uncertainty of an ANN model applied to predict 
water demand in Catania, Italy. A key limitation of many studies is that 
although demand may be predicted based on historic climatic variables, the 
forecasting situation requires separate predictions of those climatic variables, 
which as discussed in Section 3.5.1 contain considerable uncertainty. Based on 
uncertainties in forecast temperature and precipitation Zhang et al (2007) 
applied a perturbation method to temperature and a replacement method to 
rain days to generate an ensemble for 3 day ahead water demand predictions. 
Prediction bounds derived from such models may be propagated into a WDS 
model. Predictions of water demand are typically aggregated to a given user 
area; like rainfall predictions demand forecasts need to be downscaled to a 
level conducive to model application, which will add further uncertainty to 
WDS model predictions (Kang and Lansey 2009). 
 

3.5.3 Real-Time Models 
 
Given the short times available to make real time predictions, particularly 
when considering integrated systems, alternative modelling approaches have 
been employed that in the spectrum of model complexity, often have a 
smaller physical basis, and are more data driven in approach. Such models 
applied to UWWS may take the form of simplified conceptual models, where 
for example flow in sewer systems is simulated with linear reservoirs (Butler 
and Schutze 2005). Such an approach has also been applied to simulate river 
systems, where simplified model parameters are calibrated against more 
detailed physical models of the system (e.g. 1D St. Venant Equation; Meirlaen 
et al. 2001). Such models have also been termed Mechanistic Surrogate 
Models, that although less similar to the real world, are computationally 
more feasible to apply in real-time (Vanrolleghem et al. 2005). During 
simplification, where model components are lumped, parameters in the new 
model often have little physical meaning. To overcome the difficulties 
imposed by the need for extensive data collection to constrain the surrogate 
models, more complex models have been applied to generate data for model 
calibration (Vanrolleghem et al. 2005). It should be noted however, that more 
complex and so called ‘physically based’ models, whilst often having lower 
structural uncertainty than simplified models, often contain a lot of 
parameters that are poorly constrained. The adequacy of using such a model 
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to constrain the structural uncertainty in a simpler model will be dependent 
also on parameter and input uncertainty. 
 
Artificial Neural Networks (ANN) are a popular example of a Data-Driven 
Model structure that do not retain any model architecture relating to the 
system in question. Such models are essentially vector mapping functions 
where an input vector(s) is applied to the network, and an output vector is 
produced in response. The network architecture consists of an input layer 
that consists of processing elements that connect input variables to hidden 
layers in the model (Figure 7). The hidden layers receive weighted 
information from all nodes in the input layer, and provide separately 
weighted information to an output layer. A nonlinear transfer function can 
then be applied at the hidden layer node and output layer node to produce 
the output signal value (Jeong and Kim 2005; Zealand et al. 1999).  
 

 
Figure 7. Architecture of a feed-forward ANN with one hidden layer (Vj); 
weights (wij and wkj) control the strength of connection between the input 
layer (Ii) and the hidden layer, and between the hidden layer and the output 
layer (Ok) to produce the output signal (Jeong and Kim 2005). 
 
 
The ANN is essentially a black-box model that requires calibration of weights 
and internal parameters to produce the output model response, which is then 
applied in a verification period to evaluate calibration performance of the 
ANN. An advantage of an ANN approach applied in calibration is that the 
statistical distribution of the output data need not be known a priori such that 
non-stationarities and non-gaussianities (reflecting structural uncertainties) 
are implicitly incorporated into the calibration procedure (Zealand et al. 
1999). Further, the model is applicable in real-time due to fast computational 
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time compared to other modelling approaches (e.g. EPANET). In real-time 
forecasting ANN approaches have been applied to determine optimal control 
decisions based on current system states. 
 
The energy cost minimisation system (ENCOMS), initially developed by 
POWADIMA, an EC Vth framework project (Jamieson et al. 2007), and later 
by Halcrow (Rao et al. 2007), couples a GA with an ANN to determine future 
optimal control conditions for the WDS considering minimum pressure 
requirements and optimising cost minimisation (timing of pumping 
schedules in low tariff periods). The ANN is trained on a series of EPANET 
simulations which use different decision variables (e.g. pump status on/off) 
to generate 24 hour ahead system forecasts (Rao and Salomons 2007). The 
ANN is then coupled with a GA, and using the current SCADA information 
and a demand forecasting model (Alvisi et al. 2007) the optimal operating 
conditions are determined using the GA-ANN. The optimal conditions are 
then applied to the WDS and the cycle repeated when the new SCADA data 
becomes available.  
 
Significant cost savings were demonstrated in comparison to EPANET 
simulations of current practice when the ANN models were applied to a WDS 
in Haifa (Salomons et al. 2007), and also to a WDS in Valencia (Martinez et al. 
2007). A clear limitation with this approach, as with other approaches that use 
existing, complex models for training/calibration, is the assumption that 
EPANET simulations provide adequate training of the ANN, and also 
adequate evaluation of GA-ANN performance. For real world application, 
errors associated with EPANET training simulations need to be constrained 
and propagated through the ANN to provide information on the reliability of 
optimised control strategies, which also need to be confronted with real 
world data. This is also the case when applying such models in real-time 
where the input data are also forecast from other models. 
 
Modelling approaches applied in real time for system optimisation need to be 
ran a number of times to determine the best system operating procedure. 
When uncertainty is considered alongside optimisation a number of potential 
problems exist. First, if uncertainty is accounted for correctly, a number of 
control solutions may be produced that perform equally well; a form of 
equifinality that means it may be difficult to chose the best control procedure. 
Second, depending on model predictions of future system state, the time 
required to take appropriate actions (time horizon) may not be known a priori 
until the modelling is undertaken to predict future conditions. Third, 
propagating and reducing uncertainty in real-time will require an increased 
modelling time (Figure 7), which will require a longer input forecast at the 
start of the modelling period. Given that forecast accuracy declines with 



 

Real-time modelling and Data Assimilation for improving model predictions  
© PREPARED - 35 - 15 april 2010 

 

increased lead time, accounting for this input uncertainty may conversely 
increase modelling uncertainty. A parameter that provided increased weight 
to near future events, as reported by Pleau et al. (2005), may help account for 
increased uncertainty with lead time. As noted by Cloke and Pappenberger 
(2009), an ‘optimal framework’ for dealing with uncertainty will inevitably 
blend more formal and informal treatments of uncertainty in the modelling 
cascade. 
 

3.6 Summary 
 
Real-time control in UWS is important to provide optimal system 
performance to meet a range of demands imposed by a number of 
stakeholders. Real-time modelling, facilitated by advances in data collection 
and communication techniques, has the potential to improve system 
performance in real-time by offering tools to forecast future system states and 
determine optimal control solutions. However, as discussed in this section, 
real-time modelling must deal with and propagate uncertainties associated 
with input data derived from both measurements and forecast models, and 
uncertainties associated with system modelling. The time available to make 
real time predictions is a key constraint on the detail with which a system 
may be represented, and the extent to which uncertainty may be dealt with 
adequately. Given the need for forecasts of demand for WDS modelling, and 
rainfall in UWWS modelling, an optimal framework will blend different 
methods for dealing with uncertainty to inform real-time control.  
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4 Data Assimilation and Real-Time Error 
Reduction Methods 

4.1 Introduction 
 
System Forecasts made in real time combine a representation of the current 
system state with forecasts of model forcing conditions (e.g. rainfall and 
water demand). As considered in Section 3, model forecasting conditions 
often contain significant errors. Forecasting errors are also related to model 
structural errors and uncertain parameters, and the errors in the system state 
at the time of forecasting. Sensitivity to initial state conditions has received 
wide attention in weather forecasting (Rabier et al. 1996), and can also lead to 
divergence between model predictions and observations. 
 
Data Assimilation (DA) is a name provided to a class of methods that seek to 
combine uncertain models with uncertain data to provide the best estimate of 
the system state at a given point in time at which observations are available 
(Figure 8). The system model is propagated forwards in time from the initial 
states until the next set of observations become available (Figure 8b; Black 
Squares). At this point based on the observations, model states are updated 
(Figure 8b: vertical simulated discharge), and the model propagated forwards 
in time in response to the model forecasting conditions (e.g. observed or 
forecast rainfall) until the next set of observations becomes available. Data 
assimilation is closely related to State Estimation (SE), where measurements 
of the system are combined with numerical models to gain a global view of 
the system (Bargiela and Hainsworth 1989). The generic state-space 
formulation of a stochastic model may be represented as follows (see also Liu 
and Gupta 2007; Vrugt and Robinson 2007): 
 
푥 = 푓 푥 ,휃,푢 + 휂 ,      휂 ~푁[0,푅  ]                                                                       (4.1) 
 
 
푧 = 퐻 (푥∗) + 휀 ,      휀 ~푁[0,푅  ]                                                                                    (4.2) 
 
Where xt and xt-1 represent system state vectors at time t and t-1; 푥∗ denotes 
the true model states; f represents model structure propagating the system 
from t-1 to t in response to the input vector ut, and θ is a vector of time-
invariant model parameters. The observation zt is related to the model states 
through an observation mapping operator Ht; ηt represents model error, and 
휀  represents measurement error. Thus, in a DA procedure a model forecast is 
made and taking into account the relative errors between observation and 
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model, system state is updated through a combination of Equation 4.1 and 
Equation 4.2. 
 
 
 
 

 
Figure 8. Schematic illustration of Data Assimilation. Measured and predicted 
discharge in response to rainfall for a data assimilation period, prior to 
discharge forecast (A); Enlarged version of the grey box in the left hand side 
of A showing simulation predictions and simulation updates, where vertical 
simulation lines show forecast innovation in response to measured discharge 
(B); Decline in Forecast Accuracy with increased time from the last 
assimilation step (C). 
 
In the general implementation of DA the system states are updated and are 
then used as the initial conditions of a future deterministic system forecast. 
The future forecast skill is limited up to a time horizon where the initial 
conditions are washed out (Madsen and Skotner 2005); the forecast accuracy 
generally declines with increased distance from the forecast time (Figure 8C) 
due to model structural and parameter errors and errors propagated from the 
input conditions. In addition to DA approaches, error-correction procedures 
have also been developed for real time application that based on pre-
determined understanding of forecast error (i.e. in the absence of real-time 
observations) correct future model predictions. 
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A number of methods have been developed and applied to reduce 
uncertainty in real-time model application, most widely in related scientific 
disciplines, including meteorology, hydrology and climatology (Evensen 
2003; Matgen et al. 2010; van Leeuwen 2009). Such methods, despite having 
significant potential, have seen relatively little application in UWS modelling 
(Brdys et al. 2008; Kang and Lansey 2009). Section 4 will review existing DA 
and error-correction approaches for dealing with uncertainties in real-time 
modelling of UWS, considering computational issues related to these 
approaches and their implementation in UWS. Appendix A. contains a 
summary Table of some applications of the reviewed methods, which is an 
extension of the Table of uncertainty quantification methods presented in 
Hutton et al. (2011). 
 

4.2 Kalman Filtering 
 
The Kalman filter (KF) is a sequential filter method that utilises a model 
forecast step using observations from the previous time step to estimate 
current system state, and an update step utilising the observation at the 
current time step to refine the current forecast.  The Kalman filter provides a 
solution provided that Equations 4.1 and 4.2 represent a Gaussian linear 
system (Evensen 1992; Evensen 2003): 
 
푥 =  푥 + 퐾 (푧 − 퐻  푥 )                                                                                                (4.3) 
 
Kt is the Kalman gain and is often expressed as: 
 
 
퐾 =    푃   퐻  (퐻 푃 퐻 + 푅 )                                                                                      (4.4) 
 
where P is the error covariance matrix of the state variables; the superscripts f 
and a denote the state forecast (predicted) and analysed (corrected) estimate 
respectively; and T is the transpose. Equations 4.3 and 4.4 can be calculated as 
each new observation becomes available. The magnitude of the Kalman gain 
applied to the state estimate in Equation 4.3 depends on the relative 
magnitude of the observation error covariance (푅 ) and the state error 
covariance (푃 ); a high measurement error covariance will result in a smaller 
update of the forecast vector. Although the Kalman filter equations explicitly 
account for observation and model errors, assimilation errors are sensitive to 
the information provided to inform the nature of the prior error models for 
both observations and the model. As discussed in Hutton et al. (2011), such 
data in many applications are limited. The KF algorithm has been applied in a 
WDS to estimate unknown roughness in a linear estimation problem (Todini 
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1999), to sewer flow forecasting (Gelfan et al. 1999), and water quality 
modelling (Schilling and Martens 1986). The KF performed well when 
applied to estimate nodal demand in a WDS in branched areas. However, the 
KF performed poorly due to strong nonlinearities in looped areas of the WDS 
network (Kang and Lansey 2009); the KF method is best suited to linear 
problems, which limits application in UWS models, as such systems are often  
designed to be looped to increase network resilience/guaranteed consumer 
demand (Walski et al. 2003). 
 
The Extended Kalman Filter (EKF) was developed to work better in cases of 
system non-linearity; the model operator f and the observation operator H 
cannot be applied directly due to non-linearity, but are approximated with 
tangent linear operators (Jacobian) in equations (Evensen 2003). The EKF has 
been applied in modelling of sewer pollutant loads (Bechmann et al. 1999), 
WWTW optimisation in real-time (Brdys et al. 2008), water demand 
estimation (Nasseri et al. 2010), and more extensively in oceanography 
(Bertino et al. 2003), where for weakly nonlinear problems the EKF has been 
shown to perform well in comparison to the EnKF (Hoteit et al. 2005; Madsen 
and Canizares 1999). Assuming all other unknowns were previously 
calibrated (e.g. roughness), Shang et al. (2006) applied the EKF approach for 
real time calibration of water demand; a demand time-series model was 
applied to predict future demand, and corrected using measured node heads 
and pipe flows (Shang et al. 2006). Application of the EKF may be unstable in 
situations with large nonlinearities (Hoteit et al. 2005); unbounded error 
variance growth may occur due to a closure approximation which neglects 
higher order derivatives (Evensen 1994; Miller et al. 1994). Further, 
integrating the tangent linear model forwards to get the error covariance 
matrix comes at an expensive computational cost (Zhang and Pu 2010). Such 
computational costs have been alleviated to some extent through the 
application of reduced rank square root filters (Verlaan and Heemink 1997). 
 
The Ensemble Kalman Filter (EnKF), introduced by Evensen (1994), was 
developed to overcome some of the problems associated with the EKF, by 
propagating an ensemble (n) of model states derived from Monte Carlo 
perturbations of input states ut by adding a noise term 훿 ~푁[0,푈 ]. Equations 
4.3 and 4.4 are applied to each ensemble member, and the error covariance is 
calculated from the ensemble mean (푥̅ ), which overcomes the problem of 
not knowing the true state when calculating the error covariance, and the 
computational costs associated with propagation of the error covariance 
matrix (Burgers et al. 1998; Liu and Gupta 2007): 
 

푃 =  푥 − 푥̅ 푥 − 푥̅                                                                                             (4.5) 
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A key feature of the EnKF is that an ensemble of observations is used in the 
update at each time step by adding noise to the measured variable. This step 
is essential to maintain variance in the updated ensemble but at the same time 
does not affect the prediction of the ensemble mean (Burgers et al. 1998; 
Evensen 2003). Perturbations, however, may increase the sampling error, and 
thus an alternative set of schemes apply square root filter methods (EnSRF) to 
avoid perturbing initial states (Anderson 2001; Tippett et al. 2003; Whitaker 
and Hamill 2002). The EnKF has been applied most widely in the fields of 
climatology, meteorology and oceanography (Annan et al. 2005; Evensen 
2003; Hargreaves et al. 2004; Hoteit et al. 2005; Houtekamer et al. 2005; Zhou 
et al. 2006), and has been shown to work well in application to highly 
nonlinear problems (Evensen 1997). The EnKF has also been applied more 
recently to hydrological problems (Clark et al. 2008; Moradkhani et al. 2005b; 
Neal et al. 2007; Xie and Zhang 2010).  
 
The EnKF has been considered computationally feasible for certain 
applications (Vrugt and Robinson 2007), however as argued by Madsen and 
Skotner (2005), to represent the covariance matrix properly 100 ensemble 
members have been required which may still be too expensive for operational 
real-time conditions. Other studies have required only 32 ensemble members 
(Weerts and el Serafy 2005); the required amount will depend on the specific 
system being simulated. Computational requirements may be reduced 
through the application of a local Kalman filter (Ott et al. 2004), and also 
modifications made by Pham (2001) who developed a second-order-exact 
EnKF, which ensures the ensemble members match the true covariance 
matrix. The method, which was applied with a forgetting factor that relies 
more on the observation in constructing the analysis vector from the gain 
matrix, reduced the number of ensemble members required (Pham 2001). To 
overcome recalculation of the error covariance matrix, the most costly part of 
the Kalman filter approach, Canizares et al (2001) applied the Kalman Filter 
with a constant weight matrix, calculated as the mean gain derived from an 
off-line ensemble filter computation.  
 
Although the EnKF is less vulnerable to nonlinearity compared to EKF as the 
model uses the full nonlinear model, filter divergence could occur when 
nonlinearities result in a strongly non-gaussian distribution of the ensemble, 
as the filter only uses the first two moments of the ensemble in the correction 
step. In such cases the perturbed approach may better withstand non-linear 
error growth than deterministic approaches (Lawson and Hansen 2004). 
However, the EnSRF has outperformed the EnKF in application to rainfall-
runoff modelling (Clark et al. 2008). Further methodological advances and 
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variants on the EnKF (see Evensen (2003) for a historical review) include the 
Retrospective Ensemble Kalman Filter (REnKF), which uses a measurement to 
update model states at all t-n time steps, where n represents the time steps in 
which the measurements are influenced by the model states to be updated 
(Pauwels and De Lannoy 2006). The REnKF may, for example, be applied to 
in the case where CSO volume measurements reflect system states at –n time-
steps. Komma et al. (2008) presents an alternative approach that avoids 
calculating the Jacobian between states and observations, where once the 
analysed state of each ensemble is determined for downstream discharge, 
multiple realisations of each ensemble are propagated forwards from t-1, with 
random error added to each system state realisation. The states from the 
realisation which produce output discharge as close to the analysed state of 
the original ensemble member as possible are used in the update.  
 
 

4.3 Sequential Monte Carlo Sampling (Particle Filtering) 
 
Particle filtering (PF) is a technique for implementing a recursive Bayesian 
Filter by MCS (Arulampalam et al. 2002). The posterior density function is 
represented by a series of particles, each with associated weights (푤 ): 
 

푃(푥 |푧 ) ≈ 푤 훿( 푥 − 푥 )                                                                                           (4.6) 

 
where n is the number of particles and δ is the Dirac function. The weights are 
normalised such that: ∑ 푤 = 1. As the number of samples (n) becomes very 
large, the filter approaches the optimal posterior estimate. The method differs 
from EnKF as instead of updating particle state estimates, particle weights are 
updated using sequential importance sampling; such a procedure is adopted 
since sampling from the true posterior is usually impossible: 
 

푤 (∗) =
푃 푥 푧
푞 푥 푧

                                                                                                               (4.7) 

 
where * denotes the particle weight prior to normalization and q() is the 
proposal distribution (importance density). Equation 4.7 can be re-arranged 
(see Arulampalam et al. 2002) to derive the sequential case where particle 
weights are updated recursively: 
 

푤 (∗) = 푤 (∗) 푃 푧 푥 푃 푥 푥  
푞 푥 푥 , 푧

                                                                                  (4.8) 
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The selection of the proposal distribution is an important decision 
(Arulampalam et al. 2002); generally the prior is chosen, which reduces the 
weighting update to: 
 
푤 (∗) = 푤 (∗) 푃 푧 푥                                                                                                         (4.9) 
 
Particle filtering therefore occurs recursively through the application of 
Equation 4.1, and particle weight updating using Equation 4.2 and Equation 
4.9. A key advantage of particle filtering over KF is that the state-space model 
need not be linear or Gaussian. The Particle filtering method has been applied 
in climatology, meteorology and hydrological modelling (Moradkhani et al. 
2005a; Pham 2001; Salamon and Feyen 2009; Smith et al. 2008; van Leeuwen 
2009; Vossepoel and van Leeuwen 2007), and has been shown to outperform 
EnKF, but at increased computational cost (Pham 2001). 
 
A key problem in the application of particle filtering is filter degeneracy; as 
only particle weights are updated, particles move away from high probability 
regions, which results in only a few samples actually representing the PDF. 
Computational time is wasted on calculating weights that are not 
contributing to understanding of the posterior distribution. Two broad 
methods for dealing with this problem may be considered (van Leeuwen 
2009): Re-sampling the weights and moving the particles. 
 
Re-sampling the weights may be achieved through sequential importance 
sampling (SIR) by abandoning particles with lower weights and generating 
multiple copies of particles with higher weights; the number of copies 
generating being proportional to particle weight (van Leeuwen 2009). Re-
sampling may be inadequate, however for dealing with the divergence 
problem in large-scale applications as the ensemble size required for a 
successful filter performance scales exponentially with problem size (Snyder 
et al. 2008; van Leeuwen 2009). An alternative approach to resampling is to 
move the particles themselves closer to the observations by employing an 
EnKF, calculating the corrected particle weights, and finally applying a 
resampling procedure (van Leeuwen 2009). Van Leeuwen (2009) provides a 
detailed review of other methods for dealing with the degeneracy problem, 
including localization, the guided particle filter where particles are 
confronted with observations prior to the actual measurement time; the 
auxilary particle filter which uses new weights to resample the initial 
ensemble; and the backtracking filter, which moves back in time and re-
samples with a larger ensemble. As with the EnKF propagating multiple 
realisations of the model forward to account for uncertainty will take up 
computational time that may not be suitable for real-time application. A 
potential advantage of the PF over EnKF is that implementation within any 
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model structure may be easier given that the method does not update models 
states at each time step.  Neither method, however, has been applied widely 
in UWS modelling, and their application to account for uncertainty in 
different system models remains to be evaluated. 
 

4.4 Variational Data Assimilation  
 
Variational Data Assimilation (VDA) is a method unlike the family of KF and 
PF real-time methods in that instead of being applied at a point at which data 
becomes available, VDA operates over a time-series of observation points; a 
method widely applied in weather forecasting (Li and Navon 2001). The 
formulation of VDA (specifically 4D-Var) can be defined as the minimisation 
of a cost function (J) that measures the weighted sum of squares between the 
background state and the observations over a given time interval [t0, tn] (Ide 
et al. 1997): 
 

퐽 푥 = 푥 − 푥 퐵 푥 − 푥 + ∑ [푧 − 퐻 푥 ]푅 [푧 − 퐻 푥 ]      (4.10)       
 
Where the first term represents error in initial conditions and the second term 
represents error between model predictions and observations at all time 
points (where 퐵  is error in prior estimate of state variables at t0). The 
objective of the case presented in Equation 4.10 is to identify the best estimate 
of the initial state condition that minimises the cost function with respect to 
the initial conditions. The optimisation problem requires the calculation of the 
cost function, and the gradient, which can be computed from the adjoint 
technique in an iterative manner (Ide et al. 1997). 
 
If the model dynamics are linear VDA is equivalent to KF with respect to 
model states at all time steps within the assimilation period. VDA does not 
model the dynamics of the second order component of state variables, and is 
therefore not amenable to probabilistic interpretation. Further, the method as 
presented in Equation 4.10 only considers observation error, as solving the 
full minimisation problem (that includes model and parameter error terms)  
in highly dimensional nonlinear problems is very difficult to solve (Li and 
Navon 2001; Liu and Gupta 2007). If the system is nonlinear, like EKF, the 
system is represented with the tangent linear mode of M and H; therefore if 
nonlinearity is an important characteristic of the system, EnKF and PF are 
more appropriate (Liu and Gupta 2007). VDA methods are more suitable to 
complex problems as they are less demanding computationally, however they 
also do not provide an estimate of the predictive uncertainty. A combined 
approach where 4DVAR is coupled with EnKF was performed which was 
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shown to outperform both methods separately, but at a large computational 
cost (Hansen and Smith 2001).  
 

4.5 Joint State and Parameter Estimation 
 
In the approaches considered for real-time estimation, the majority of 
approaches do not consider parameter uncertainty and assume for real-time 
application that an optimal parameter set is already known (Shang et al. 
2006). In general this is a realistic assumption and model parameters are often 
considered to vary more slowly in comparison to the evolution of system 
state in real time (Kang and Lansey 2009). However, as identified in Section 3, 
many approaches for parameter calibration do not adequately consider 
structural and measurement errors which affect the quality of conditioned 
parameter estimates. A number of methods have been developed which 
jointly deal with state and parameter estimation. These methods may be 
broadly classified into approaches that apply DA over a time-series used for 
calibration (static parameters), and approaches that consider parameters to be 
time-varying. 
 
Vrugt et al. (2005) developed the Simultaneous (parameter) Optimisation and 
Data Assimilation (SODA) procedure. SODA implements the SCEM-UA 
parameter optimisation method in an outer loop, and for each sampled 
parameter set an inner EnKF loop is applied recursively to the time-series 
used to evaluate the performance of the parameter set. The method has been 
applied to hydrological modelling studies where recursive state estimation 
was only applied to a subset of model states, which improved model 
performance in both calibration and validation as the method attempted to 
account for state estimation errors (Vrugt et al. 2006). The method, however, 
still depends on the ability to specify a realistic estimate of model error, and 
does not consider the possibility that parameters may also be time varying. 
 
Dual estimation has been developed where both parameters and model states 
are considered time-varying, where either EnKF (Moradkhani et al. 2005b) or 
PF (Moradkhani et al. 2005a) is applied not only to modify state variables 
during each update but also to sample parameter values. Therefore the PDF 
of model states and parameters is updated at each time-step, and provides 
good predictions to observed system response. A downside to joint state and 
parameter estimation is that the model response to a change in a given 
parameter value may not be observed until a number of time-steps ahead. 
Salomon and Feyen (2009) applied a PF to the joint state-parameter estimation 
problem over a time interval of observations reflecting concentration time for 
the hydrological problem considered (similar concerns may also affect urban 
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wastewater modelling employing such a procedure). A downside to the joint 
or dual estimation approach is that parameters are likely to vary more slowly 
than states; if both are updated each time step instabilities may occur (Liu and 
Gupta 2007). However, joint state and parameter estimation approaches 
applied to WDS models have allowed refinement of uncertainty bounds on 
for example pipe resistance during changing system conditions (Brdys and 
Chen 1995). Whether parameters require updating at each time step will 
depend on the specific model in question; In ANN models, for example, the 
separation of model structures and parameters is more difficult to define. 
 
 

4.6 Forecasting Error-Correction 
 
The assimilation methods considers thus far in Section 4 update model states 
based on observations. Therefore the accuracy of the system forecast beyond 
the last observation time is determined by the ‘initial conditions’ provided at 
the last observation. The forecast skill is limited to the time horizon over 
which the initial conditions are washed out (Madsen and Skotner 2005), and 
is reliant on the accuracy of the model structure and parameters determined a 
priori, which may be poor (Refsgaard 1997). An alternative group of error 
correction methods have been applied which update deterministic forecasts 
based on a correction model determined prior to the time of system forecast, 
when observations are available. Such models typically take advantage of the 
observation that errors are correlated in time, often as a function of the 
magnitude of the system state to be corrected. 
 
ANN models, part of a class of data-driven models, as introduced in Section 
3.5.3, have been applied to simulate model error time-series (Shamseldin and 
O'Connor 2001). Based on prior time series analysis, Abebe and Price (2003) 
constructed an ANN model using input nodes relating to past errors, past 
rainfall and antecedent conditions. The ANN model when trained on past 
error time-series improved on predictions derived from the conceptual 
rainfall-runoff model with lead times of 1-6 hours.  
 
Other methods applied to error correction include Autoregressive Time Series 
models, based on past correlation of errors in the predicted and observed 
time-series (Lekkas 2008; Lekkas et al. 2001), Genetic Programming (Khu et al. 
2001), and local models (Babel and Shinde 2011; Sannasiraj et al. 2005). 
Romano et al. (2010) applied a Group Method of Data Handling (GMDH) 
approach to predict future flow/pressure in WDS based on past 
measurements. The model is built as a network of polynomial functions, 
which unlike ANN and regression approaches does not require the network 
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architecture to be specified in advance, and uses all available data. The 
method could be applied to error-correction. Vojinovic et al. (2003) applied a 
hybrid modelling approach to simulate UWWS wet weather response which 
coupled MOUSE (MOUSE 2004) with a stochastic radial basis function neural 
network. The hybrid approach provided improved performance over the 
deterministic MOUSE predictions, and also in comparison to MOUSE was 
applied with an Autoregressive exogenous model (Vojinovic et al. 2003). 
 
In a comparative study of linear, autoregressive and neural network based 
approaches, Goswami et al. (2005) found that whilst all 8 models considered 
produce reasonable predictions (Nash-Sutcliffe R2 > 90%) for 1 day ahead 
forecasts, the Non-Linear Auto-regressive eXogenous-Input Model 
(NARXM), the linear transfer function model, and a Neural Network 
Updating Model were found to be suitable for lead times of up to 6 days 
(Nash-Sutcliffe R2 > 90%). This Study, however, used known rainfall to 
evaluate the error-correction procedures. The ability of error correction 
procedures to account for strong input errors associated with input driver 
forecasts has yet to be evaluated, and will depend on the temporal nature of 
the errors in input drivers. 
 
Error-correction methods have mainly focussed on correcting the model 
output time-series of interest. Madsen and Skotner (2005) applied a correction 
procedure that calibrated an error forecast model (AR1 and harmonic models 
applied) to a time series of innovations, and used pre-determined gain 
functions to update not only the measurement location but also the state 
variables. The Harmonic model in particular showed improved performance 
in comparison to the no update case for up to 24h lead times in a flood 
forecasting procedure (Madsen and Skotner 2005). Another method to 
distribute the prediction error from observation points into system states was 
recently presented by Mancarella et al. (2008), who employed a local model to 
estimate forecast error at measured locations in the computational domain, 
and correlations between model states to distribute these error corrections 
over the model domain. Such an approach is appealing as it represents a 
computationally efficient method for state updating, and because correlation 
between modelled states and other locations can be determined off-line prior 
to on-line application. Further, such an approach provides a means for 
optimising error correction measurement locations, prior to model 
application. 
 
The error-correction procedures considered calibrate a model to the residuals 
derived prior to online forecasting. Such an approach can implicitly account 
for systematic errors in model structure, parameter values and errors in input 
values. However, the approach assumes that the output measurement values 
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contain no error when determining the residual time-series, and also that the 
fitted time-series model contains no errors. The error-correction when applied 
is therefore deterministic. An error-correction procedure following for 
example Asefa (2009) and also Zhang et al. (2009a), where multiple ANN 
(Bayesian Neural Networks) models are trained to the time series, may 
provide a more faithful representation of the fit of the error-correction model 
to the residual time series. When correcting the error in the deterministic 
model forecast, for each prediction time, an upper and lower bound of the 
corrected forecast may be given instead of a deterministic prediction. A 
related approach to account for uncertainty in future predictions was 
presented by Shrestha et al (2009). First, a process based model was applied 
with the GLUE methodology to reproduce prediction intervals over a 
calibration period derived from parameter sampling. Then two ANNs were 
trained, one to reproduce each prediction bound, based on model input data. 
The application of such an approach is computationally feasible in real-time 
to predict uncertainty bounds as each new observation becomes available; the 
approach is reliant on the accuracy of the underlying model and the 
robustness of the original prediction bounds. In theory, such an approach 
may be extended to methods such as that of Schoups and Vrugt (2010) that 
attempt to represent different forms of uncertainty in the model prediction 
bounds.  
 
Error-correction procedures, because of their computational efficiency, are 
potentially the most suitable method to accounting for error in real-time 
model forecasting, particularly where computational time is limited by the 
need to identify the optimal management scenario for a system. However, in 
modifying control (actuator) settings the system in itself is modified at each 
model run. Therefore applying a priori error corrections to scenarios may not 
adequately reflect system error, as it is unlikely that data are available for all 
potential management scenarios to constrain an error correction procedure 
for different system control settings. Further, it may also be difficult to 
provide system state updates from errors determined at specific measuring 
locations, given that the relationship between the measurement site and other 
system states will be by definition modified by the control settings. 
 

4.7  Summary 
 
A number of real-time modelling approaches for quantifying and reducing 
uncertainty have been considered in Section 4. VDA has seen widest 
application in Meteorological studies, with explicit consideration of 
observational error and, relative to EnKF and PF, lower computational 
expense; however, solving for other forms of error in complex models is 
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difficult. Like EKF the method may not be suitable for highly nonlinear 
problems, and also does not provide any information on predictive 
uncertainty. EnKF and PF approaches are better suited to processing data that 
arrives in real time, and the ensemble nature of the methods makes them 
more amenable for dealing with model non-linearities. Both of these 
approaches attempt to represent model state error explicitly, however, as 
with model calibration approaches discussed in Hutton et al. (2011), 
information to constrain input data uncertainty (e.g. rainfall) and output data 
uncertainty (e.g. pertaining to system states or sewer CSO) alongside 
structural uncertainty, may be difficult to define. Unlike EnKF and PF 
approaches, computationally efficient error-correction procedures attempt to 
correct for modelling error in future system forecasts based on off-line 
residual calibration. Such methods have the potential to implicitly account for 
a number of error types provided they are manifest in the deterministic 
model’s residual time-series.  
 
Data availability and data quality are key factors governing the applicability 
of some of the methods considered in Section 4. Improved rainfall monitoring 
and sensor placement/performance, as briefly considered in Section 3, are 
other areas to be addressed in PREPARED work package 3 that will facilitate 
the application of the aforementioned methods for dealing with uncertainty. 
EnKF and PF methods have been applied successfully within model 
calibration frameworks to account for system uncertainty. Such application 
suggests a hierarchical approach for dealing with system uncertainty in real-
time, combining calibration, state updating and error-correction methods 
applied at different temporal scales may provide an optimal framework to 
facilitate real-time control in UWS.  
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5 Conclusion 

This reports fulfils the requirements of Deliverable 3.6.2 within work package 
3.6 of the PREPARED Enabling change project (EC Seventh Framework 
Programme Theme 6), and has evaluated existing methods applied in a 
number of scientific fields for Data Assimilation and Error-correction to 
facilitate the application of numerical models in real-time. Real-time 
modelling in Urban Water Systems has been applied to help optimise the use 
of existing water supply and sanitation systems. However, such modelling 
approaches often do not consider inherent system uncertainty that may 
originate from a variety of sources and affect our ability to identify optimal 
operational solutions. 
 
Data Assimilation approaches have been applied and developed most widely 
in related scientific disciplines for updating model predictions in real-time as 
new measurements become available. Kalman Filtering, notably Ensemble 
Kalman Filtering, and Particle Filtering methods provide approaches for 
propagating system uncertainty in real-time and accounting for data and 
model errors. Such methods provide the potential to account for uncertainty 
in real-time modelling introduced by model simplification and uncertainty 
associated with input forecasts. However, such methods are potentially 
demanding computationally for data assimilation, and like many of the 
methods reviewed in Hutton et al. (2011) are limited by the ability to specify 
the structure of model errors and data errors. 
 
Error-correction methodologies are relatively simple to implement and in 
comparison to DA methods provide potential to reduce uncertainty in real-
time system forecasts beyond the point of the last assimilation time step. Such 
methods can implicitly account for a range of uncertainties provided these 
uncertainties are manifest in the deterministic model residual time-series 
derived off-line prior to application. The error-correction methodologies 
reviewed mostly provide deterministic corrections to output time-series, 
despite the methods themselves containing uncertainties.  
 
Joint state and parameter estimation approaches have also been applied in 
limited circumstances, where DA filters have been applied within calibration 
frameworks. Such methods suggest a hierarchical approach for dealing with 
model uncertainty, combining model calibration, data assimilation and error-
correction applied at different temporal scales may provide an optimal 
framework to account for uncertainty in real-time modelling and control in 
Urban Water Systems. Although the methods presented here, as well as the 
techniques and methodologies that will be implemented in Task 3.6.2 can be 
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considered as generic, the final selection of the methodologies to be applied 
depends also on the specific requirements of the PREPARED cities selected 
for demonstration. 
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7 Appendix A: Tabular Classification of Uncertainty Methodologies 

The Table is an extended version of the methodologies reviewed in Hutton et al. (2011) 
 
Reference Sampling/ 

Optimisation 
Method/Model 

Parameter 
Uncertainty 

Structural 
Uncertainty 

Input/Data 
Uncertainty 

Output 
Uncertainty 

State 
Uncertainty 

Notes/Assumptions 

Calibration Techniques 
Optimisation techniques (Savic et al. 2009) 
(Savic et al. 2009) 
review paper 

 GA; GN; GB; SA Identify 
optimal 
parameter set. 

- - minimised - Reduction of parameter uncertainty. 
No quantification of uncertainty. 

FOSM  
(Kang and Lansey 
2009; Lansey et al. 
2001) 
 

- Mean and 
Variance 

- ND PD from 
FOSM  

- Assumes linear approximation of 
model function and Gaussianity, 
and requires assumed posterior 
error model. ND data errors 
assumed 

Formal Bayesian Approaches  
(Kapelan et al. 
2007) 

SCEM-UA PPDF EDF EDF PPDF - Assumed EDF error model. 

(Freni and 
Mannina 2010) 

MCS PPDF ND ND PPDF; PB - Assumed ND error model; Box-Cox 
transformation. 

(Schaefli et al. 
2007) 

M-H MCMC PPDF NMD NMD PB - AR model; NMD parameters 
calibrated; PD checks. 

(Yang et al. 2007) M-H MCMC PPDF ND ND PB - Assumed ND error model; Box-Cox 
transformation; AR Model; PD 
checks; calibrated error parameters. 

(Willems 2008) MCS Separate Inferred from ERM Total PB. - Parameters inferred separately from 
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Calibration VD structural and input error. 
(Schoups and 
Vrugt 2010) 

DREAM-ZS PPDF SEP; BF; SD SEP; BF; SD PB - AR model; SD, BF and SEP 
parameters calibrated as function of 
flow magnitude and account 
implicitly for all errors; PD checks. 

(Thyer et al. 2009) MCMC PPDF Not explicit DRM; ERM; 
HDM for 
output error 

Parameter PB; 
Total PB. 

- PD checks.  

(Renard et al. 
2010) 

MCMC  SP DRM; HDM 
for output 
error. 

Total PB. - PD checks. Difficulty of separating 
sources of error (input from 
structural) without sufficient prior 
information. 

(Zhang et al. 
2009b) 

GA  Identify 
optimal 
parameter set. 

BMA - BMA 
prediction 
bounds. 

- Assumes that different models cover 
all Structural error; no parameter 
uncertainty. 

Informal ‘Pseudo’ Bayesian Approaches 
(Thorndahl et al. 
2008) 

MCS PPDF Implicit in 
IEDF 

- PB. - IEDF likelihood for parameter 
uncertainty; assumed likelihood 
function, behavioural threshold. 

(Liu et al. 2009) MCS PPDF Implicit  Implicit Input; 
Output RCEB. 

PB - Structural and Input error inferred 
from non-stationary output; 
likelihood based on output RCEB.  

Possibility Theory and Fuzzy Approaches 
(Revelli and 
Ridolfi 2002) 

GN search of each 
α-cut 

FMF - - FMF - Output possibility distribution 
based on parameter uncertainty 
only. 

(Branisavljevic et 
al. 2009) 

GA search of each 
α-cut 

FMF - - FMF - Output possibility distribution 
based on parameter uncertainty 
only. 

Evidence Theory  
(Sadiq et al. 2006) DS BPA - - - - No formal model, but combination 

of evidence to produce Belief and 
Plausibility functions. 
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Real-Time approaches 
Kalman Filtering (Evensen 2003) 
(Todini 1999) KF Optimised by 

KF 
- ND - - Assumed ND error model for 

demand observation errors. Model 
Linearity required. 

(Kang and Lansey 
2009) 

MCS; LHS PPDF Implicit ND errors in 
KF 

PB ND errors in 
KF 

MCs used to evaluate LHS and 
FOSM; KF limited in nonlinear WDS 
networks. 

(Shang et al. 2006) EKF A priori 
parameters 

Implicit Output errors 
MP; 

% error of total ND errors in 
EKF 

Requires Linear adjoint model; 
Assumes Gaussianity of errors. 

(Bechmann et al. 
1999) 

EKF; QN  Mean and 
Variance 

Implicit ND errors R2 error ND errors in 
EKF 

Model Linearity assumed. 

(Clark et al. 2008) EnKF; EnSRF A priori 
parameters 

Implicit Output errors 
MP; Input 
parameters 

PB from 
ensemble 

State 
perturbation 
parameters 

Log transformation helped 
overcome nonlinearities. 

(Xie and Zhang 
2010) 

EnKF A priori 
parameters 

Implicit  MP-ND input 
errors 

RMSE ND in EnKF Single State vector for uncertain 
parameters 

Particle Filtering (van Leeuwen 2009). See “Joint State and Parameter Estimation” 
Variational Data Assimilation 
(Li and Navon 
2001) 

VDA A priori 
parameters 

Implicit ND errors Output error 
minimised 

- No estimate of predictive 
uncertainty 

(Seo et al. 2003) QN - Implicit ND input and 
output errors 

Output error 
minimised 

- No estimate of predictive 
uncertainty 

Joint State and Parameter Estimation 
(Vrugt et al. 2006) Outer SCEM-UA; 

Inner EnKF. 
PPDF Implicit and 

then Inferred 
from VD 

Input error 
Inferred from 
VD; output 
error MP 

Parameter PB; 
Total PB. 

EnKF EnKF only applied to linear model 
states. 

(Salamon and 
Feyen 2009) 

PF PPDF per time 
step (time-
varying 
parameters) 

Implicit Input error 
Inferred from 
VD; ERM. 

Total PB. PF Joint inference of parameter and 
states in State-space model 
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(Moradkhani et al. 
2005b) 

EnKF for 
Parameters; EnKF 
for States  

PPDF per time 
step (time-
varying 
parameters 

ND MP-ND input 
and output 
error 

Total PB. EnKF Separtate EnKF for States and 
Parameters 

Error-correction        
(Abebe and Price 
2003) 

ANN Implicit Implicit Implicit Output error 
minimised 

- ANN trained to residual error time-
series. Output data error in training 
not considered. 

(Mancarella et al. 
2008) 

Local Model Implicit Implicit Implicit Output error 
minimised 

Minimised  State uncertainty miminmised by 
extrapolating error correction from 
measured locations 

(Shrestha et al. 
2009) 

GLUE MCS PPDF - - PB - ANN trained to reproduce PB of 
physically based model from input 
data 

GA, genetic algorithm; GN, Gauss-Newton technique; GB, Gradient-Based optimisation; SA, Simulated Annealing; FOSM, First-Order Second-Moment; SCEM-UA, 
Shuffled Complex Evolution Metropolis algorithm; PPDF, Posterior Probability Distribution Function; ND, Normal Distribution; EDF, exponential power density 
function; MCS, Monte Carlo Simulation; M-H, Metropolis-Hastings; MCMC, Markov Chain Monte Carlo; NMD, Normal Mixture Distribution; AR, Autoregressive 
Model; PD, Posterior Diagnostics; PB, Prediction Bounds; DREAM-ZS, DiffeRential Evolution Adaptive Metropolis Algorithm; SEP, Skewed Exponential Power 
Density; BF, Bias Parameter; SD, standard deviation; DRM, Daily Rainfall Multiplier; ERM, Event Rainfall Multiplier; HDM, Heteroscedastic Discharge; SP, Stochastic 
Parameters; CL, Confidence Limits; VD, Variance Decomposition; BMA, Bayesian Model Averaging; IEDF, Informal Exponential Density Function;  RCEB, Rating 
Curve Error Bounds; FMF, Fuzzy Membership Function; DS, Dempster-Shafer rules of combination; BPA, Basic Probability Assignment; KF, Kalman filter; LHS, Latin 
Hypercube Sampling; MP, Magnitude proportional; EKF, Ensemble Kalman Filter; QN, Quasi-Newton method; EnKF, Ensemble Kalman Filter; RMSE, Root Mean 
Square Error; PF, Particle Filter; EMC; Evolutionary Monte Carlo. 
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8 Appendix B: Glossary of Terms 

 
A glossary of terms has been included to facilitate understanding of the 
relevant report sections (The Glossary has been modified from Goulsby and 
Samuels 2005). The glossary builds on the terms defined in Hutton et al. 
(2011). 
 
Accuracy - closeness to reality. 
Adaptive capacity - Is the ability to plan, prepare for, facilitate, and 
implement adaptation options. Factors that determine cities’ adaptive 
capacity include economic wealth, technology and infrastructure, knowledge 
and skills, the nature of its institutions, its commitment to equity, and its 
social capital. 
Adaptive Strategy – Method for optimising/expanding existing systems to 
reduce risk and vulnerability to change (e.g. climate change). 
Aims - The objectives of groups/individuals/organisations involved with a 
project. The aims are taken to include ethical and aesthetic considerations. 
Aleatory uncertainty – see Natural Variability. 
Basin (river) (see catchment area) - the area from which water runs off to a 
given river. 
Calibration – see Calibration parameters. 
Catchment area - the area from which water runs off to a river. 
Bias - The disposition to distort the significance of the various pieces of 
information that have to be used. 
Characterisation - The process of expressing the observed/predicted 
behaviour of a system and its components for optimal use in decision making. 
Climate Change – changes in weather over > 30 year time-periods, notably in 
response to modern anthropogenic influence. 
Combined Sewer Overflow (CSO) – Overflow discharge from combined 
sewer systems that bypasses the Wastewater Treatment Plant and enters 
directly into the receiving water body. CSO discharge typically occurs during 
rainfall events. 
Concentration Time – see Lag time. 
Conditional probability - The likelihood of occurrence of an event given the 
prior occurrence of another event. 
Confidence interval - A measure of the degree of (un)certainty of an estimate, 
usually presented as a percentage. For example, a confidence level of 95% 
applied to an upper and lower bound of an estimate indicates there is a 95% 
chance the estimate lies between the specified bounds. Confidence limits can 
be calculated for some forms of uncertainty (see knowledge uncertainty), or 
estimated by an expert (see judgement). 
Consequence - An impact such as economic, social or environmental 
damage/improvement that may result from a flood or UWS failure. May be 
expressed quantitatively (e.g. monetary value), by category (e.g. High, 
Medium, Low) or descriptively. 
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Coping capacity - The means by which people or organisations use available 
resources and abilities to face adverse consequences that could lead to a 
disaster. 
Correlation - Between two random variables, the correlation is a measure of 
the extent to which a change in one tends to correspond to a change in the 
other. One measure of linear dependence is the correlation coefficient p. If 
variables are independent random variables then p = 0. Values of +1 and -1 
correspond to full positive and negative dependence respectively. Note: the 
existence of some correlation need not imply that the link is one of cause and 
effect. 
Decision uncertainty - The rational inability to choose between alternative 
options. 
Design objective - The objective (put forward by a stakeholder), describing 
the desired performance of an intervention, once implemented. 
Dependence - The extent to which one variable depends on another variable. 
Dependence affects the likelihood of two or more thresholds being exceeded 
simultaneously. When it is not known whether dependence exists between 
two variables or parameters, guidance on the importance of any assumption 
can be provided by assessing the fully dependent and independent cases (see 
also correlation). 
Demand – Amount of water consumed/extracted by domestic and industrial 
users from the WDS (typically expressed in volumetric terms per unit time 
period). 
Deterministic process / method - A method or process that adopts precise, 
single-values for all variables and input values, giving a single value output. 
Discharge (stream, river, sewer pipe) - as measured by volume per unit of 
time. 
Dry Weather Flow – Flow in the sewer system during dry weather that 
originates from domestic and industrial users. 
Element - A component part of a system. 
Epistemology - A theory of what we can know and why or how we can know 
it. 
Error - Mistaken calculations (e.g. from a model) or measurements with 
quantifiable and predictable differences.  
Expectation – the expected value of a variable refers to the mean value the 
variable takes. For example, in a 100 year period, a 1 in 100 year event is 
expected to be equalled or exceeded once. This can be defined 
mathematically.  
Extrapolation - The inference of unknown data from known data, for instance 
future data from past data, by analysing trends and making assumptions. 
Applying a derived relationship from one time-period to conditions different 
from that in which the relationship was derived. 
Failure - Inability to achieve a defined performance threshold (response given 
loading). "Catastrophic" failure describes the situation where the 
consequences are immediate and severe, whereas "prognostic" failure 
describes the situation where the consequences only grow to a significant 
level when additional loading has been applied and/or time has elapsed. 
Forecast – Prediction of a future system state, typically derived from a 
numerical model. 
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Failure mode - Description of one of any number of ways in which a system 
may fail to meet a particular performance indicator. 
Functional design - The design of an intervention with a clear understanding 
of the performance required of the intervention. 
Governance - The processes of decision making and implementation 
Harm - Disadvantageous consequences; economic, social or environmental 
(See Consequence). 
Hazard - A physical event, phenomenon or human activity with the potential 
to result in harm. A hazard does not necessarily lead to harm. 
Hazard mapping - The process of establishing the spatial extents of 
hazardous phenomena. 
Hierarchy - A process where information cascades from a greater spatial or 
temporal scale to lesser scale and vice versa. 
Human reliability - Probability that a person correctly performs a specified 
task. 
Ignorance - Lack of knowledge. 
Institutional uncertainty - inadequate collaboration and/or trust among 
institutions, potentially due to poor communication, lack of understanding, 
overall bureaucratic culture, conflicting sub-cultures, traditions and missions. 
Integrated risk management- An approach to risk management that 
embraces all sources, pathways and receptors of risk and considers 
combinations of structural and non-structural solutions. 
Integrated Water Resource Management - IWRM is a process which 
promotes the co-ordinated management and development of water, land and 
related resources, in order to maximise the resultant economic and social 
welfare in an equitable manner without compromising the sustainability of 
vital  ecosystems. 
Intervention - A planned activity designed to effect an improvement in an 
existing natural or engineered system (including social, organisation/defence 
systems). 
Joint probability - The probability of specific values of one or more variables 
occurring simultaneously. For example, extreme water levels in estuaries may 
occur at times of high river flow, times of high sea level or times when both 
river flow and sea level are above average levels. When assessing the 
likelihood of occurrence of high estuarine water levels it is therefore 
necessary to consider the joint probability of high river flows and high sea 
levels. 
Judgement - Decisions taken arising from the critical assessment of the 
relevant knowledge. 
Knowledge - Spectrum of known relevant information. 
Knowledge uncertainty - Uncertainty due to lack of knowledge of all the 
causes and effects in a physical or social system (also termed epistemic 
uncertainty). For example, a numerical model of the sewer system may not 
include an accurate mathematical description of all the relevant physical 
processes. The model is thus subject to a form of knowledge uncertainty. 
Various forms of knowledge uncertainty exist, including: 
Process model uncertainty - All models are an abstraction of reality and can 
never be considered true. They are thus subject to process model uncertainty. 
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Measured data versus modelled data comparisons give an insight into the 
extent of model uncertainty but do not produce a complete picture. 
Statistical inference uncertainty - Formal quantification of the uncertainty of 
estimating the population from a sample. The uncertainty is related to the 
extent of data and variability of the data that make up the sample. 
Statistical model uncertainty - Uncertainty associated with the fitting of a 
statistical model. The statistical model is usually assumed to be correct. 
However, if two different models fit a set of data equally well but have 
different extrapolations/interpolations then this assumption is not valid and 
there is statistical model uncertainty. 
Lag Time – The characteristic time for a response to an input at a given 
location in a system. 
Likelihood - A general concept relating to the chance of an event occurring. 
Likelihood is generally expressed as a probability or a frequency (as a value 
between 0 = impossible; 1 = certain). 
Marginal Probability – see Probability. 
Mitigation – to moderate the force or impacts of an event.  
Model Based predictive Control – the application of numerical models, often 
coupled with an optimisation procedure, to identify the optimal control 
decision of a system in response to future demands on that system. 
Natural variability - Uncertainties that stem from the assumed inherent 
randomness and basic unpredictability in the natural world and are 
characterised by the variability in known or observable populations (also 
known as Aleatory uncertainty). 
Nowcast – A forecast of the immediate state of a system, typically up to 6 
hours. 
Objectives – A goal, typically defined as the maximisation or minimisation of 
a given function. For example, minimise cost whilst maintain system 
performance.  
Optimisation – Intervention that achieves the best performance of a system in 
reference to one or more (competing) objectives. In modelling, adjustment of 
system parameters to achieve objectives pertaining to the modelled system. 
Operating Horizon – See Time Horizon. 
Parameters - The parameters in a model are the constants chosen to represent 
the chosen context and scenario. In general the following types of parameters 
can be recognised: 
Exact parameters - which are universal constants, such as the mathematical 
constant: Pi (3.14259...). 
Fixed parameters - which are well determined by experiment and may be 
considered exact, such as the acceleration of gravity, g (approximately 9.81 
m/s).  
A-priori chosen parameters - which are parameters that may be difficult to 
identify by calibration and so are assigned certain values. However, the 
values of such parameters are associated with uncertainty that must be 
estimated on the basis of a-priori experience, for example detailed 
experimental or field measurements  
Calibration parameters - which must be established to represent particular 
circumstances. They must be determined by calibration of model results for 
historical data on both input and outcome. The parameters are generally 
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chosen to minimise the difference between model outcomes and measured 
data on the same outcomes. It is unlikely that the set of parameters required 
to achieve a "satisfactory" calibration is unique, reflecting a state of 
equifinality. 
Parameter Hypercube - Multi-dimensional mode space where each 
dimension consists of a range of potential values for a particular model 
parameter.  
Performance - The degree to which a process or activity succeeds when 
evaluated against some stated aim or objective. 
Performance indicator - The well-articulated and measurable objectives of a 
particular project or policy. These may be detailed engineering performance 
indicators, such as acceptable CSO volumes, minimum pressure in WDS, rock 
stability, or more generic indicators such as public satisfaction. 
Possibility – The likelihood of a state or event occurring in the future. 
Possibility differs from probability. Possibility theory was developed in the 
face of uncertain and often subjective understanding of the propensity for 
future states with little information from the past to inform on future 
likelihood.  
Precautionary Principle - Where there are threats of serious or irreversible 
damage, lack of full scientific certainty shall not be used as a reason for 
postponing cost-effective measures to prevent environmental degradation. 
Precision - degree of exactness regardless of accuracy. 
Preparedness - The ability to ensure effective response to the impact of 
hazards, including the issuance of timely and effective early warnings and the 
temporary evacuation of people and property from threatened locations. 
Probability - A measure of our strength of belief that an event will occur. For 
events that occur repeatedly the probability of an event is estimated from the 
relative frequency of occurrence of that event, out of all possible events. In all 
cases the event in question has to be precisely defined, so, for example, for 
events that occur through time reference has to be made to the time period, 
for example, annual exceedance probability. Probability can be expressed as a 
fraction, % or decimal. For example the probability of obtaining a six with a 
shake of four dice is 1/6, 16.7% or 0.167.  
Probabilistic method - Method in which the variability of input values and 
the sensitivity of the results are taken into account to give results in the form 
of a range of probabilities for different outcomes. 
Probability density function (distribution) - Function which describes the 
probability of different values across the whole range of a variable (for 
example across a parameter value in a particular model). 
Probabilistic reliability methods - These methods attempt to define the 
proximity of a structure to fail through assessment of a response function. 
They are categorised as Level III, II or I, based on the degree of complexity 
and the simplifying assumptions made (Level III being the most complex). 
Process model uncertainty - See Knowledge uncertainty. 
Project Appraisal - The comparison of the identified courses of action in 
terms of their performance against some desired ends. 
Progressive failure - Failure where, once a threshold is exceeded, significant 
(residual) resistance remains enabling the defence to maintain restricted 
performance. The immediate consequences of failure are not necessarily 
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dramatic but further, progressive, failures may result eventually leading to a 
complete loss of function. 
Random events - Events which have no discernible pattern. 
Receiving water body – A water body, typically a river, lake or sea that 
receives effluent from the Sewer system or WWTW. 
Recovery time - The time taken for an element or system to return to its prior 
state after a perturbation or applied stress. 
Reliability index - A probabilistic measure of the structural reliability with 
regard to any limit state. 
Real-Time Control – The process by which control structures in a given 
system are modified in response to real-time information derived from in situ 
measurements and models. 
Resilience - The ability of a system/community/society/defence to react to 
and recover from the damaging effect of realised hazards. 
Resistance . The ability of a system to remain unchanged by external events. 
Return period - The expected (mean) time (usually in years) between the 
exceedence of a particular extreme threshold. Return period is traditionally 
used to express the frequency of occurrence of an event, although it is often 
misunderstood as being a probability of occurrence. 
Risk - Risk is a function of probability, exposure and vulnerability. Often, in 
practice, exposure is incorporated in the assessment of consequences, 
therefore risk can be considered as having two components: the probability 
that an event will occur and the impact (or consequence) associated with that 
event. See Section 4.3 above. Risk = Probability multiplied by consequence 
Risk analysis - A methodology to objectively determine risk by analysing and 
combining probabilities and consequences. 
Risk assessment - Comprises understanding, evaluating and interpreting the 
perceptions of risk and societal tolerances of risk to inform decisions and 
actions in the flood risk management process. 
Risk communication (in context) - Any intentional exchange of information 
on environmental and/or health risks between interested parties. 
Risk management - The complete process of risk analysis, risk assessment, 
options appraisal and implementation of risk management measures 
Risk management measure - An action that is taken to reduce either the 
probability of flooding or the consequences of flooding or some combination 
of the two 
Risk mapping - The process of establishing the spatial extent of risk 
(combining information on probability and consequences). Risk mapping 
requires combining maps of hazards and vulnerabilities. The results of these 
analyses are usually presented in the form of maps that show the magnitude 
and nature of the risk. 
Risk mitigation - See Risk reduction. 
Risk perception - Risk perception is the view of risk held by a person or 
group and reflects cultural and personal values, as well as experience. 
Risk reduction - The reduction of the likelihood of harm, by either reduction 
in the probability of a flood occurring or a reduction in the exposure or 
vulnerability of the receptors. 
Risk profile - The change in performance, and significance of the resulting 
consequences, under a range of loading conditions. In particular the 
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sensitivity to extreme loads and degree of uncertainty about future 
performance. 
Risk register - An auditable record of the project risks, their consequences 
and significance, and proposed mitigation and management measures. 
Risk significance (in context) - The separate consideration of the magnitude 
of consequences and the frequency of occurrence. 
Robustness - Capability to cope with external stress. A decision is robust if 
the choice between the alternatives is unaffected by a wide range of possible 
future states of nature. Robust statistics are those whose validity does not 
depend on close approximation to a particular distribution function and/or 
the level of measurement achieved. 
SCADA – Supervisory Control And Data Acquisition. Computer systems that 
monitor the state of a system, and allow control of devises within the system.  
Scale - Difference in spatial extent or over time or in magnitude; critical 
determinant of vulnerability, resilience etc. 
Scenario - A plausible description of a situation, based on a coherent and 
internally consistent set of assumptions. Scenarios are neither predictions nor 
forecasts. The results of scenarios (unlike forecasts) depend on the boundary 
conditions of the scenario. 
Sensitivity - Refers to either: the resilience of a particular receptor to a given 
hazard. For example, frequent sea water flooding may have considerably 
greater impact on a fresh water habitat, than a brackish lagoon; or: the change 
in a result or conclusion arising from a specific perturbation in input values or 
assumptions. 
Sensitivity Analysis - The identification of those parameters which critically 
affect the output of a model or process. Conducted to better understand 
system operation, and allocate resources to constrain model output. 
Sewer System – Infrastructure of pipes and control structures that conveys 
sewerage and rainfall-runoff in urban areas from buildings and the roads to 
the wastewater treatment plant and receiving water body. 
Skeletonisation – Removal of pipes not considered essential to the operation 
of a WDS model. 
Source - The origin of a hazard (for example, heavy rainfall, strong winds, 
surge etc). 
Stakeholders - Parties/persons with a direct interest (stake) in an issue. 
Stakeholder Engagement - Process through which the stakeholders have 
power to influence the outcome of the decision. Critically, the extent and 
nature of the power given to the stakeholders varies between different forms 
of stakeholder engagement. 
Statistic - A measurement of a variable of interest which is subject to random 
variation. 
Strategy - A strategy is a combination of long-term goals, aims, specific 
targets, technical measures, policy instruments, and process which are 
continuously aligned with the societal context. 
Strategic spatial planning - Process for developing plans explicitly 
containing strategic intentions referring to spatial development. Strategic 
plans typically exist at different spatial levels (local, regional etc). 
Statistical inference uncertainty - See Knowledge uncertainty 
Statistical model uncertainty - See Knowledge uncertainty 
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Sustainable Development - is development that meets the needs of the 
present without compromising the ability of future generations to meet their 
own needs 
Susceptibility - The propensity of a particular receptor to experience harm. 
System - An assembly of elements, and the interconnections between them, 
constituting a whole and generally characterised by its behaviour.  
System state - The condition of a system at a point in time. 
Tolerability - Refers to willingness to live with a risk to secure certain 
benefits and in the confidence that it is being properly controlled. To tolerate 
a risk means that we do not regard it as negligible, or something we might 
ignore, but rather as something we need to keep under review, and reduce 
still further if and as we can. Tolerability does not mean acceptability. For 
example, tolerance of CSO or sewer surcharge. 
Time Horizon – Time required to initiate actions to mitigate against the 
impact of a forecasted event. 
Uncertainty - A general concept that reflects our lack of sureness about 
someone or something, ranging from just short of complete sureness to an 
almost complete lack of conviction about an outcome. 
Urban Wastewater System – triplet of components: Sewer System, 
Wastewater treatment plant and receiving water body designed to mitigate 
against flooding and provide sanitation. 
Validation - is the process of comparing model output with observations of 
the ’real world’. 
Variability - The change over time of the value or state of some parameter or 
system or element where this change may be systemic, cyclical or exhibit no 
apparent pattern. 
Variable - A quantity which can be measured, predicted or forecast which is 
relevant to describing the state of the flooding system e.g. water level, 
discharge, velocity, wave height, distance, or time. A prediction or forecast of 
a variable will often rely on a simulation model which incorporates a set of 
parameters. 
Vulnerability - Characteristic of a system that describes its potential to be 
harmed. This can be considered as a combination of susceptibility and value. 
Wastewater Treatment Plant (WWTW) – Treatment plant for the removal of 
contaminants and nutrients from sewerage for entry as effluent into the 
receiving water body. 
Water Distribution Network (WDS) – Network of pipes, pumps, nodes, 
tanks and valves that distributes drinking water to meet consumer demands. 
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