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Abstract

Computer models for analysing pipe flows and pressures in water distribution net-

works are in widespread use throughout the world as essential tools for the efficient

operation and improvement of very complex systems. Models invariably incorporate a

number of unknown parameters, the values of which must be chosen so that the mod-

elled performance matches as closely as possible that of the real network. The process

of calibration involves both expensive data collection and a complex parameter opti-

misation problem.

This report presents novel Genetic Algorithm based parameter calibration procedures

developed to match hydraulic model output with observed data sets.

(Key words: Networks, Calibration, Modelling, Optimization)
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Introduction

The ability to model larger water distribution systems (WDS) has improved consid-

erably during the past decade[3,16]. Nowadays, it is widely acknowledged that design

and operation of such systems depend critically on the efficiency and accuracy of

mathematical models utilised to model the systems’ behaviour under a variety of con-

ditions. Before a model is used, it must be adjusted to ensure that it will predict, with

reasonable accuracy, the behaviour of the system it models, i.e., it must be calibrated.

This is widely acknowledged by the research community and several studies on WDS

calibration have been published in the past two decades[4,13,19,30].

The problem of WDS model calibration, even if only for water quantity, (pressures

and flows) is highly complex due to the large number of parameters examined and

non-linear due to the flow equations. Several researchers have addressed this problem

developing methods to minimise the difference between the values of the observed

data and those computed by the network simulation model. These methods are based

on the use of analytical equations[30], simulation models[19], or optimisation tech-

niques[13]. Techniques based on analytical models may be applied to very small net-

works or may alternatively require large network to be simplified by considering only

the skeleton network. Simulation techniques can handle larger networks but are gen-

erally restricted to a single loading condition. The most promising calibration proce-

dures are based on optimisation. However, the success of current methods usually de-

pends on linearizing assumptions or the unrealistic calculation of partial derivatives.

In addition, they are generally local optimisation procedures which tend to become

entrapped in local minima or suffer from numerical instabilities associated with ma-

trix inversion.

Since models capable of simulating the hydraulic behaviour of  pipe networks are

complex in terms of size, non-linearity, and discrete nature, the use of analytical

methods or classical optimization techniques requires many simplifications. These in

turn may cause unsatisfactory or unrealistic results. On the other hand, Genetic Algo-

rithms, which belong to a class of stochastic optimisation techniques capable of deal-

ing with complex, multi-modal and discontinuous functions, have the required robust-

ness and efficiency as well as conceptual simplicity to handle the aforementioned
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problems. Over the course of the last two decades these computer algorithms have

proved their usefulness in various domains of application[29]. Recently, they have been

applied to a broad spectrum of water resources problems[1,2,14,17,21,23,31,33].

The research described in this report combines theoretical and practical work in mod-

elling (simulation) and Genetic Algorithms (optimisation) to develop novel, efficient

and robust calibration procedures and tools. It is believed that the availability of these

tools and an increased understanding of the data requirements for reliable model con-

struction has great potential benefits. These include improved operation and more

purposeful monitoring of water supply systems, increased quality of supply and ulti-

mately lower costs to water companies and consumers.
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Mathematical Formulation

A distribution network may be viewed as a connected graph with arcs representing

pipes and nodes representing network elements like valves, pumps, reservoirs, de-

mand points, etc. Two hydraulic variables are associated with network elements,

namely flows and heads. The following mathematical statement of the problem is pre-

sented for a general water distribution network. The equations of the network express

flow conservation at nodes and relations between head losses and heads for arcs:

q cji
j J i

i
∈
∑ =

( )
(1)

∆h h hij i j= − (2)

where J(i) is a set of nodes adjacent to node i, ci is the consumption at node i, qji is the

flow from node j to node i, ∆hij is the head loss in the pipe connecting i and j and hi is

the head at node i. The head loss ∆hij to friction associated with flow through a pipe

can be expressed in a general form as:

∆h R q qij ij ij ij

n
=

−1
(3)

where Rij and n (n > 1) depend on the flow resistance law selected. In this work the

Colebrook-White formula is used to calculate resistance coefficient Rij as a function of

the friction factor fij, the diameter dij of the pipe connecting i and j, flow qij and the

pipe length  Lij:

( )R f d q Lij ij ij ij ij= ϕ , , , (4)

The friction factor f is a function of the roughness of the pipe k, the diameter d, the

flow q through the pipe and the viscosity of the fluid (which is for this work consid-

ered constant).

For specified pipe characteristics, demand patterns and reservoir heads the system of

non-linear equations (1)-(4) has a unique solution defined by the flows and heads in

the whole network. There are several iterative techniques[11] available for solving the

above system which are incorporated into modern simulation tools[22, 34, 35]. These

tools allow network analysts to concentrate solely on building realistic representation

of the water distribution network thus enabling easier development of models. If input



4

data for the model are correct, then predicted pressures and flows will match observed

values. However, two main sources of problems are associated with data collection for

real networks: (a) not all input parameters are measured directly because of the ex-

pense of data collection; (b) even if it is possible to measure all parameters a certain

amount of inaccuracy will still be associated with readings in the field.
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Standard Calibration Procedures

Techniques and procedures for constructing a WDS model may vary but in the UK

they are summarised by the Water Research Centre (WRc plc) into the following ac-

tivities[35]:

•  inspection of supply, distribution and consumer records and maps,

•  site inspection of plant and equipment,

•  preliminary field measurement,

•  field measurement exercise,

•  entry of network data for a computer analysis, and

•  calibration of the network model.

The basic aim of the inspection of supply, distribution records and maps is to select

network data which will justify their inclusion in the model. For example, pipes which

are below certain size are either ignored or grouped together and replaced by equiva-

lent pipes. Since the demand for water is modelled to take place at nodes consumer

records and maps are inspected in order to enable allocation of the total demand to

network demand zones and finally to nodes. The demand allocation is aided by the

field measurement exercise which involves flow measurement of significant demands,

transfers to and from the network and from source works, pump stations and reser-

voirs. The key to meaningful calibration is having field measurements corresponding

to more than one flow rate. In addition to flows the exercise also entails pressure log-

ging at as many key sites as possible, e.g. at pump stations, in known problem areas,

at large diameter pipes, etc.

Calibration performed using modern simulation packages commences when input data

including an initial estimate of the roughness values of all pipes is entered into the

model. The model is then analysed and the results compared with the field test meas-

urements. Calibrations of this type proceed based on a tedious and time-consuming

trial-and-error procedure where the parameter values are adjusted based on the hy-

draulic results and the hydraulic analysis is repeated. This iterative process continues

until some stated operating specifications are satisfied or no viable change in input

parameters which improves agreement between observed and predicted values can be

found. In the latter case, the possibility of modelling anomalies, such as reduced pipe
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diameter due to internal corrosion, an incorrectly modelled open/closed valve, etc.,

should be investigated.

The above presented calibration procedure is extremely tedious and, even assuming

enough time and resources are given for model building, depends critically on the

analyst’s skills and his/her understanding of the WDS being studied. Often this proce-

dure will result in a less than optimum solution and may not be effective when a large

number of variables and operating conditions are investigated.
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Genetic Algorithms and Optimization

Genetic Algorithms (GAs) are biologically motivated adaptive computer techniques

based on natural selection and genetic operators[8,15,20]. These algorithms are often

used to solve complex optimization problems[29]. There are many variations of GAs

but the following general description encompasses most of the important features.

Consider a GA for a parameter optimization problem where a set of real-valued vari-

ables x=(x1, x2,…, xn) is to be found which maximise/minimise some objective func-

tion

max ( )
x

f x (5)

The analogy with nature is established by the creation within a computer of a set of

solutions called a population. Each individual in a population is represented by a set

of parameter values which completely describe a solution. These are encoded into

chromosomes, which are, in essence, sets of character strings analogous to the chro-

mosomes found in DNA. Standard GAs (SGAs) use a binary alphabet (characters may

be 0’s or 1’s) to form chromosomes[9]. For example a two-parameter solution

x = (x1,x2) may be represented as an 8-bit binary chromosome: 1001 0011 (i.e., 4 bits

per parameter, x1 = 1001, x2 = 0011). In that particular form the algorithm requires an

additional mapping from bitstrings to real-valued parameters.

The initial population of solutions, which is usually chosen at random, is allowed to

evolve over a number of generations. At each generation, a measure (fitness) of how

good each chromosome is with respect to the objective function is calculated. This is

achieved by simply decoding binary strings into parameter values, substituting them

into the objective function and computing the value of the objective function for each

of the chromosomes. Next, based on their fitness values individuals are selected from

the population and recombined, producing offspring which will comprise the next

generation. This is the recombination operation, which is generally referred to as

crossover because of the way that genetic material crosses over from one chromosome

to another. For example, if two chromosomes are x = (x1,x2) = 1111 1111 and

y = (y1,y2) = 0000 0000, the two offspring may be z = 1100 0000 and w =  0011 1111.
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The probability that a chromosome from the original population will be reproduced

into the new generation is dependent on its fitness value. Fit individuals will have

higher probability of being selected than less fit ones. Hence, the new population will

have more of the better solutions. Mutation also plays a role in the reproduction phase,

though it is not the dominant role, as is popularly believed, in the process of evolution.

In SGAs mutation randomly alters each bit (also called gene) with a small probability.

For example, if the original chromosome is x = (x1,x2) = 1111 1111, the same chromo-

some after mutation may be x’ = 1110 1111.

In essence, Genetic Algorithms rely on the collective learning process within a popu-

lation of individuals, each of which represents a search point in the space of potential

solutions. They draw their power from the theoretical principle of implicit parallel-

ism[9]. This principle enables highly fit solution structures (schemata) to receive in-

creased numbers of offspring in successive generations and thus lead to better solu-

tions.

Genetic Algorithms and Calibration

In recent years, many researchers have begun to investigate the use of evolution based

computer methods for calibration of various hydraulic/hydrologic models. Wang[33]

investigated the use of GAs combined with fine-tuning by a local search method for

calibration of a conceptual rainfall-runoff model. Models were calibrated by mini-

mizing the residual variance defined as the sum of square of differences between

computed and observed discharges.

Duan et al.[6] introduced the shuffled complex evolution method for a similar prob-

lem by hybridising a genetic algorithm with the Simplex search method. The objective

function used was the mean daily square root of the difference between the observed

flows and simulated flows.

Babovic et al.[1] used GA and the hydrodynamic MOUSE package to fit Manning

numbers to pipes while Mohan and Lucks[17] reported on use of GAs for estimating

parameter values of some linear and non-linear flow routing and water quality predic-

tion models.

Most of those studies[1,17,33] used the GA formulation with binary representation

requiring an additional decoding procedure from bitstrings to real-valued parameters
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being calibrated. This representation has several advantages over other encodings[5].

It is simple to create and manipulate, it is theoretically tractable, and it is widely ap-

plicable since very many problems can be encoded in binary strings. The mapping

from a binary string to a parameter can be accomplished in many different ways but

the precision of the mapping is limited to

π =
−x x

n
max min

2
(6)

where xmin and xmax are the lower and upper bounds on parameter x and n is the length

of the bitstring representing parameter x. To construct a multi-parameter coding one

can concatenate several bitstrings into a single chromosome representing a set of pa-

rameters. However, when dealing with a large number of parameters requiring high

accuracy representation, a solution chromosome becomes increasingly long and the

power of the GA search diminishes.

GA for Continuous Parameter Optimization

Instead of working with binary coding and applying problem-independent genetic op-

erators, the size of WDS calibration problems dictates direct representation of deci-

sion variables. This simply means that bitstrings of SGA are replaced with real num-

bers. The change simplifies the algorithm in that no additional mapping is necessary

since these numbers represent unknown parameters of the WDS model. However,

other alterations to the SGA are required. Firstly, random binary initialisation is re-

placed with random real number initialisation. This is simply achieved by generating

lists of real numbers that fall within parameter limits (xmin, xmax).

The SGA crossover operator may also be used for real number chromosomes since it

does not depend on the representation scheme. Similarly to the SGA recombination

genetic material crosses over from one chromosome to another. Let x = (x1,...,xn) and

y = (y1,...,yn) be the parent chromosomes. Then the offspring z= (z1,...,zn) may be com-

puted by

{ } { }z x or yi i i= (7)
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where xi or yi are chosen with some probability of crossover pc. In addition to this, an

operator suitable for continuous parameter optimization may be used. Namely, aver-

age crossover[5] takes two chromosomes and produces one offspring that is the result

of averaging the corresponding parameters of two parental chromosomes

z
x y

i
i i=

+
2

(8)

Other crossover operators like extended intermediate recombination and extended line

recombination [18] can also be used.

The mutation operator has been investigated for binary domains by many authors [8]

and there have been many suggestions on how often it should be applied to a chromo-

some. The authors are of the opinion that that the mutation rate should be inversely

proportional to the number of bits in the chromosome as suggested by Mühlenbein

and Schlierkamp-Voosen[18]. However, an operator analogous to binary mutation,

but suitable for continuous parameter optimization must be used since simple bit in-

version is not possible with the floating-point representation.

An obvious way to mutate a real-valued parameter x is to randomly select a number

that falls within parameter limits xm∈ [xmin, xmax]. Alternatively, the new parameter

may be given by

x x zm = + (9)

where z is a number in the mutation range interval. This range can be a constant value

throughout the evolution process or it may be a function of the generation number. By

exploiting an analogy with annealing processes the range should become smaller with

the evolution process approaching final stages.
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Case Study

The proposed algorithm is used to provide a calibrated network model for the Danes

Castle Zone of Exeter City (Devon, UK). This network was chosen for the study be-

cause it provides a complex calibration problem to solve and because the necessary

input and output data were readily available. Namely, the network model for this zone

was already built in 1991 when South West Water Services Limited (SWW) commis-

sioned Ewan Associates to develop the model [7].

The Danes Castle zone is supplied from Pynes Water Treatment Works (see Figure 1).

Water is drawn from the River Exe and after treatment is pumped via a dedicated 18”
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Figure 1. Supply and distribution arrangements for Danes Castle
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main directly to the Danes Castle service reservoir and via a 12” pumping main di-

rectly into distribution.

The skeleton of the network is given in Figure 1, while the full network used in the

original calibration exercise [7] and subsequently in this study consists of 197 nodes

and 242 elements (see Appendix A for the input data). Of the 197 nodes, one is a

fixed-head reservoir (at treatment works) and one is the Danes Castle service reser-

voir. Of the 242 network elements, two are pumps and three are modelled as throttling

valves. In 1991, the Danes Castle reservoir was known to be in poor condition and it

was reconstructed in 1992/93.

In order to monitor leakage, five waste districts have been set up as shown in Figure 1.

These zones were serving between 1559 and 4498 properties each. Information ob-

tained from these zones were used for demand calculations.

A 48 hour field test was undertaken between 13th and 15th August 1991. Flows were

monitored into or within the system at 15 locations while pressures were monitored at

23 locations including the water level variation at Danes Castle service reservoir and

the pump suction and delivery pressures at Pynes Treatment Works.

Three loading conditions were considered in the analysis:

(a)  Peak demand - at 10:00h on the 13th of August.

(b)  Average demand - at 16:00h on the 13th of August (see Appendix A).

(c)  Minimum (night) demand - at 03:30h on the 13th of August.

The calibration process adopted and carried out by Ewan Associates comprised of the

following tasks:

(1)  to match the total system flows;

(2)  to assess the predicted and observed total pressures for each snapshot and make

reasoned adjustments to pipe roughness coefficients; and

(3)  to report model anomalies.

Initially theoretical roughness values from standard hydraulic tables [10] were adopted

for various materials as in Table 1. Steps (2) and (3) were carried out through a trial-

and-error procedure based on the consultant’s experience and knowledge of the sys-

tem. The results of the calibration[7] in terms of prediction errors, are presented in

Figure 2 and Figure 3.
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Table 1. Initial Estimates of Pipe Roughness Coefficients

Material Type k value (mm) Assumed Pipe Condition

Cast Iron 6.00 80 years of moderate attack

Asbestos Cement 0.15 Good

Ductile Iron 0.15 Good

PVC 0.10 Good

Relined Mains 0.15 Good

It should be noted that the pressure logger at node 5050 failed for the minimum de-

mand loading condition (peak in Figure 2). Resulting pipe roughness coefficients are

given in Appendix B (second row, under the heading “Ewan”). There were numerous

modelling anomalies reported by Ewan Associates [7] which were not resolved at the

time since they warranted additional investigation work. The anomalies were mainly

caused by flow restrictions (“throttling”) in particular pipes which may have occurred

because of pipe tuberculation, internal pipe corrosion or even because the situation in
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the network had changed since the mains geographic plan was made. Without further

investigation these problems were solved by assigning high k (roughness) values to

those pipes (e.g., pipes 3, 10, 12, 16, etc.).

Although the number of parameters to be estimated cannot exceed the number of total

observations available for all the loading conditions, the solutions obtained using the

GA technique are based on fitting friction factor values to each of the pipes. This as-

sumption was used for several reasons:

(a)  to demonstrate model capabilities to deal with a large number of variables;

(b)  to obtain an initial grouping of pipes in absence of detailed knowledge of the age

and the service condition of pipes;

(c)  to investigate how different and unrealistic solutions can result from attempting to

acquire more information from collected data than is available.

Once consistent results have been obtained, groups of pipe with similar friction values

can be identified and the GA can be restarted again. Starting from an initial grouping

of pipes based only on nominal pipe diameters may introduce initial bias and prevent

realistic solutions from being found.

The objective function used in this work is:
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where, p1,2 are normalising coefficients, and Hi
o and Hi

p are the observed and pre-

dicted heads at node i, respectively, and Qj
o and Qj

p are the observed and predicted

flows through the pipe j.

Since GAs are stochastic-search techniques, solutions obtained running the program

with different random seed values used to initialise the evolution process may be dif-

ferent. Therefore, several GA runs were necessary to ensure that the solutions identi-

fied were of good quality. Figure 4 shows results, in terms of sums of squared errors

for both pressure heads and flows in the network, obtained by the original calibration

study [7] and the 10 GA runs.

Since information regarding the internal condition of the mains was not available the

initial values for calibration parameters were initially restricted to

kmin ≤€k€≤  kmax. Resulting roughness values obtained by the GA are presented in Ap-

pendix B (under the heading “kmax=20 mm”). However, results obtained in the original
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study and the GA results indicate that better calibration results may have been ob-

tained if higher roughness values were used. The table in Appendix B shows results

obtained for  kmax = 60 mm.
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Conclusions

Various complex problems that arise in hydraulics and water resources in general have

been solved using evolution-based programs and their hybrids. The applications of

these techniques yield remarkable results with respect to the number of possible solu-

tions an engineer may be faced with when dealing with the design and management of

hydraulic systems. This report describes the development of a nonlinear optimization

model for pipe network calibration. The model developed is based on GAs but departs

from classical GAs in its representation. The use of floating-point representation en-

ables calibration of a large number of unknown parameters without compromising ac-

curacy and precision of the solutions.

The capabilities of the developed model are ascertained using data of an actual water

distribution network. The results obtained by applying the developed model to the

Danes Castle network (Exeter, Devon) clearly show the advantages over trial-and-

error procedures used to match hydraulic model output with observed data sets. The

efficiency of the procedure is tested by running the model several times with different

seed values for the random number generator. Each GA run produced a solution better

(with respect to the objective function used in this work) than the original study. The

high level of agreement between the results of different runs also demonstrates the

robustness of the procedure.

With respect to other optimization or analytical models, the GA-based calibration

tool: (a) is easier to use because it does not need complex mathematical apparatus to

evaluate partial derivatives or to invert matrices; (b) can handle larger networks, sev-

eral loading conditions and a larger number of calibration parameters; and (c) permits

easy incorporation of additional parameter types (pipe diameters, demands, etc.) and

constraints into the optimization process.

It can be anticipated that the number of applications in this area will steadily grow

since GAs are not only effective, they are also easily realisable due to the conceptual

simplicity of the basic mechanisms. Their potential is even greater when parallel

forms of the algorithms can be developed and executed in low-cost multiprocessor

computing systems.
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Appendix A

Nodes

ID Elevation

(m)

Demand

(l/s)

3000 10.4 0.438211

3001 8.38 0

3002 7.92 0

3003 10.06 1.704568

3004 8.7 1.842017

3010 8 1.267655

3011 18.99 0.641376

3015 8.23 0

3020 12.8 1.154087

3025 22 0.428796

3026 23.7 1.154466

3027 24.49 0

3030 24.49 0

3035 23 0.125274

3040 12.19 2.166761

3041 20.97 0

3045 12.19 0

3050 12.19 0.122498

3051 6 0.419707

3052 6 0.082232

3053 6 0.079397

3054 6 0.028356

3060 6.07 0.532309

3061 6 0.04537

3062 6.4 0.079397

3063 6.4 0.053876

3064 6.4 0

3070 9.67 0.325956

3071 9.67 0.098264

3072 9.5 0.102082

3073 6.4 0.039698

3074 9.5 0

3075 6.4 0.04537
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Nodes

ID Elevation

(m)

Demand

(l/s)

3076 5.7 0.065219

3077 5.25 0.412519

3080 10.5 0.318678

3081 9.08 0.324231

3082 9 0

3083 19.81 0.290322

3084 19.81 0.706857

3085 11.89 0.276816

3090 9 0.393162

3095 6.68 0

4000 7.5 1.932201

4010 6.89 1.334978

4015 7.32 0.686687

4016 7 0.50752

4020 7.62 0.732494

4021 8 0.548623

4022 8 0.443823

4023 8 0

4025 6.83 0.395239

4030 6.53 0.457622

5000 21 0.399252

5005 22.19 0.345727

5010 15.5 0.10029

5012 14.19 0.166443

5015 14.63 0.258059

5020 16.15 0.334326

5021 26 0.254054

5025 14.33 0.305591

5030 14.33 0

5035 12.19 0.431554

5040 32.31 0.702543

5045 40 0

5049 43.79 0

5050 43.68 0

5060 39.5 0.532204

5062 39.586 0.508377
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Nodes

ID Elevation

(m)

Demand

(l/s)

5065 36.25 0.86899

5070 9.8 0.857269

5075 8.41 0

5080 10.36 0.288257

5085 12.93 0

5090 39.56 1.148491

5095 38.5 0

5100 27.43 0.502038

5105 28 1.447096

5110 28 0

5115 18 1.574201

5120 26 0.697161

5125 13.41 0.767554

5130 9.14 0.220817

5131 29.78 0

5133 33.08 0

5135 8.53 0

5140 7.92 0.766705

5200 54.89 0

5205 55.21 0

5210 46 0

5215 43 0

5216 43 0

5220 43 0

5225 44.5 0

5226 44.5 0

5230 33.4 0.331111

5235 38 0.256451

5240 37 0.862208

5241 37 0

5245 34.5 0

5246 34.5 0

5247 34.5 0

5300 54.89 0

5301 54.89 0

5303 55.21 0
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Nodes

ID Elevation

(m)

Demand

(l/s)

5305 34.7 0

5310 34.7 0

5315 41 0.295332

5320 41 0

5325 41 0.099179

5326 34.16 0.102082

6000 24.5 0.250994

6005 24.3 0.108573

6010 21.79 1.408546

6015 19.5 0.340329

6016 19.5 0

6020 15 0

6025 19.86 1.228856

6024 19.86 0

6026 28 0.163063

6027 28 0.146429

6028 21.3 0.303642

6029 28.35 0.072383

6030 21.3 0.170721

6035 21 0.098955

6040 21 0.056042

6041 20.42 0.764201

6042 8.84 0.530838

6043 21.03 0.238455

6045 16.03 1.318714

6050 10.03 0.078609

6054 10 0

6055 10 1.069331

6060 9.5 0

6061 9 0

7000 19.51 -0.35878

7005 19.2 0.380454

7010 19.2 0.568682

7009 19.2 0

7011 17.1 0.81789

7015 19.2 0.068484
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Nodes

ID Elevation

(m)

Demand

(l/s)

7014 19.2 0

7016 21.74 0.800935

7017 25 1.021349

7018 25 0.461837

7020 18.38 0

7021 18.38 0.22786

8000 10.4 0

8002 15 0.02

8004 15.24 0

8006 15.24 0

8008 34.444 0

8100 7 0

8104 61.3 0

8106 61.3 0

8110 61.3 0

8112 61.3 0

8114 7.5 1.93

8116 7.5 1.93

8118 60.01 0

8122 60.01 0

8124 34.44 0

8130 15 0

8140 6.72 4.15

8150 16 0

8160 36 0

8200 16 0

8202 16 0

8204 16 0

8206 16 0

8208 15.8 0

8210 27.1 0.103681

8212 20 0

8214 18.26 0

8216 15.8 0

8218 17.18 0

8220 17 0
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Nodes

ID Elevation

(m)

Demand

(l/s)

8222 17.17 0

8224 17.19 0

8226 17 0

8228 17.17 0

8230 16 0

8232 16 0

8234 16 0

8236 16.5 0

8238 13.78 0

8240 13.93 0

8300 34.44 1.79

8310 12 1.87

8312 8.53 0

8314 7.5 0

8316 17.5 0.28

8318 9.75 0

8320 6 2.27

Pipes

ID Head Node Tail Node Length

(m)

Diameter

(mm)

k

(mm)

1 3000 3001 110 203 1.5

2 3000 3002 100 300 0.5

3 3000 3010 290 254 70

4 3000 3010 290 102 10

5 3000 8000 10 254 10

6 3002 8314 315 300 0.5

7 3003 3004 410 100 1

8 3003 3020 130 300 0.5

9 3003 8314 420 300 0.5

10 3010 3011 590 102 80

11 3010 3015 500 152 20

12 3010 3020 760 305 70

13 3015 8314 10 152 20

14 3020 3025 300 152 1.5
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Pipes

ID Head Node Tail Node Length

(m)

Diameter

(mm)

k

(mm)

15 3020 3030 360 305 60

16 3020 3035 420 229 100

17 3025 3026 180 152 1.5

18 3025 3027 190 152 1.5

19 3030 3035 75 305 30

20 3030 3040 1170 406 20

21 3040 3041 200 229 1.5

22 3040 3045 200 229 35

23 3045 3050 30 152 35

24 3045 3060 520 229 45

25 3050 3051 720 152 35

26 3050 3070 440 152 40

27 3051 3052 190 152 10

28 3051 3052 190 102 10

29 3052 3053 105 102 10

30 3052 3063 330 152 10

31 3053 3054 200 150 10

32 3053 3064 315 152 10

33 3060 3061 50 152 10

34 3060 3063 405 152 10

35 3061 3062 315 152 10

36 3061 3073 320 152 30

37 3062 3063 200 152 10

38 3062 3076 405 152 10

39 3063 3064 150 102 10

40 3070 3080 110 152 30

41 3070 8318 100 152 10

42 3071 3072 295 152 10

43 3071 3072 305 152 10

44 3071 8318 10 152 10

45 3072 3073 185 152 35

46 3072 3074 190 152 35

47 3072 3077 300 152 40

48 3073 3075 100 152 10

49 3074 3075 185 152 10

50 3074 3076 150 152 10
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Pipes

ID Head Node Tail Node Length

(m)

Diameter

(mm)

k

(mm)

51 3075 3076 295 152 10

52 3076 8114 95 152 90

53 3077 8100 1250 180 0.05

54 3077 8100 1210 180 0.05

55 3077 8116 490 152 40

56 3080 3081 295 102 10

57 3080 3085 105 152 25

58 3081 3082 85 76 1

59 3082 3083 405 150 0.1

60 3083 3084 100 76 1

61 3084 3085 250 102 1

62 3085 3090 375 152 20

63 3090 3095 1015 152 20

64 4000 4010 300 152 1.5

65 4000 8314 50 102 30

66 4010 4015 160 152 1

67 4015 4016 505 102 1

68 4015 4020 105 152 1

69 4020 4021 185 152 1.2

70 4020 4025 310 152 1.2

71 4021 4022 40 152 1.2

72 4021 4023 40 152 1.2

73 4023 8312 100 150 1.2

74 4025 4030 370 152 1.2

75 4030 8140 300 152 1.2

76 5000 5005 385 305 40

77 5000 8216 190 305 40

78 5005 5010 400 305 40

79 5010 5012 95 305 40

80 5010 8150 20 152 1

81 5012 5015 395 305 40

82 5015 5020 100 305 650

83 5015 5025 695 254 55

84 5020 5021 205 305 650

85 5020 8002 5 152 1.5

86 5021 8104 1090 305 650
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Pipes

ID Head Node Tail Node Length

(m)

Diameter

(mm)

k

(mm)

87 5025 5030 40 150 25

88 5025 5050 505 254 60

89 5025 5070 950 254 40

90 5030 5035 100 150 20

91 5035 5040 300 150 0.1

92 5035 8310 50 152 0.1

93 5040 5045 315 150 0.1

94 5040 5065 360 150 0.1

95 5045 5050 150 457 12

96 5045 5060 30 254 13

97 5045 5226 500 305 2

98 5049 8110 270 457 1

99 5049 8206 3000 457 0.75

100 5050 5200 125 457 5

101 5060 5062 245 254 13

102 5062 5095 400 254 4

103 5070 5075 180 254 40

104 5075 5080 200 254 5

105 5075 5125 380 150 10

106 5080 5085 45 254 1

107 5080 5130 195 300 0.5

108 5080 8000 100 381 10

109 5085 5090 400 152 0.5

110 5090 5095 110 178 1

111 5090 5100 240 152 4

112 5095 5100 200 102 4

113 5100 5105 170 150 1

114 5105 5110 50 150 1

115 5110 5115 90 150 3

116 5110 5125 305 152 0.5

117 5110 5125 265 254 0.3

118 5110 5131 650 254 0.1

119 5115 5120 705 102 4

120 5120 5241 400 102 4

121 5125 5130 125 254 0.1

122 5130 5135 100 300 0.5
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Pipes

ID Head Node Tail Node Length

(m)

Diameter

(mm)

k

(mm)

123 5131 5133 20 305 0.1

124 5131 5226 820 305 1.5

125 5133 5235 350 305 0.1

126 5135 5140 215 150 1

127 5135 8312 105 300 0.5

128 5200 5205 490 254 1

129 5200 5300 7 457 2

130 5205 5210 190 254 2

131 5210 5215 40 254 2

132 5215 5216 290 150 2

133 5215 5220 40 254 2

134 5220 5225 340 203 2

135 5220 5320 15 203 2

136 5225 5226 10 152 2

137 5225 5230 290 203 55

138 5225 5325 100 203 1

139 5230 5235 350 203 55

140 5235 5240 350 305 1

141 5235 5241 400 203 5

142 5240 5245 600 305 0.5

143 5241 8160 150 203 5

144 5245 5246 10 203 0.5

145 5245 8008 10 254 1

146 5245 8300 185 305 0.5

147 5247 8124 10 203 0.5

148 5300 5301 10 457 2

149 5300 5305 610 254 1

150 5301 5303 405 152 1

151 5301 8118 5 457 1

152 5305 5310 100 254 1

153 5310 5315 40 254 1

154 5315 5320 25 203 1

155 5320 5325 100 203 120

156 5325 5326 300 152 1

157 6000 6005 300 152 3

158 6000 8160 395 152 3
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Pipes

ID Head Node Tail Node Length

(m)

Diameter

(mm)

k

(mm)

159 6005 6010 535 152 3

160 6010 6015 480 152 10

161 6010 6016 400 254 40

162 6010 8008 525 254 1.5

163 6015 6016 5 152 1.5

164 6015 8004 5 102 25

165 6015 8006 5 102 1

166 6015 8130 315 102 10

167 6015 8316 55 102 10

168 6016 6020 400 254 40

169 6020 6025 320 203 40

170 6025 6024 5 152 10

171 6025 6026 300 150 60

172 6025 6035 605 203 10

173 6024 6030 45 102 10

174 6024 8130 500 102 10

175 6026 6027 70 102 60

176 6027 6028 255 102 60

177 6027 6029 200 102 60

178 6028 6029 300 102 60

179 6028 6030 80 102 60

180 6030 6035 485 102 1.5

181 6035 6040 90 203 1.5

182 6035 6043 125 102 1.5

183 6040 6041 45 102 1.5

184 6040 6045 420 152 1.5

185 6041 6042 495 102 1.5

186 6041 6045 400 102 1.5

187 6042 8320 300 102 1.5

188 6043 6054 1000 102 1.5

189 6045 6050 300 102 1.5

190 6045 6050 320 152 1.5

191 6050 6054 110 152 1.5

192 6050 6055 215 102 1.5

193 6054 6055 100 152 1.5

194 6055 6060 575 150 1.5
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Pipes

ID Head Node Tail Node Length

(m)

Diameter

(mm)

k

(mm)

195 6060 6061 150 150 1.5

196 7000 7005 420 152 1

197 7000 7014 130 152 1

198 7000 8124 450 203 1

199 7005 7010 60 102 1

200 7010 7011 605 102 1

201 7010 7016 275 102 3

202 7009 7014 245 102 1

203 7015 7016 100 102 10

204 7015 7017 385 102 10

205 7016 7018 300 102 1

206 7016 7021 500 80 1

207 7017 8004 300 102 15

208 7018 8006 300 102 1

209 7020 8130 360 80 80

210 8000 8312 125 300 0.1

211 9000 8106 5 305 1

212 8104 8106 1 305 1

213 9000 8112 5 457 1

214 8110 8112 1 457 1

215 8114 8116 2 102 1.5

216 8118 8122 2 457 4

217 8120 8122 5 457 4

218 8200 8204 1 152 0.1

219 8200 8238 500 457 1

220 8202 8216 1 305 1

221 8204 8240 500 457 5.5

222 8208 8210 410 102 1

223 8208 8216 10 102 1

224 8210 8212 195 102 1

225 8210 8214 830 102 1

226 8218 8220 5 500 1

227 8220 8226 5 500 1

228 8220 8236 5 500 1

229 8222 8242 5 500 1

230 8224 8226 5 500 1
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Pipes

ID Head Node Tail Node Length

(m)

Diameter

(mm)

k

(mm)

231 8228 8242 5 500 1

232 8230 8232 5 450 1

233 8230 8234 5 450 1

234 8230 8236 130 500 1

235 8232 8234 5 450 1

236 8234 8238 25 457 1

237 8234 8240 25 457 5

243 8102 8120 1 500 1E-07

244 8108 8120 1 500 1E-07
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Appendix B

Roughness Values (mm)

Pipe Ewan

kmax = 20 mm kmax = 60 mm

No. GA

Run

1

GA

Run

2

GA

Run

3

GA

Run

4

GA

Run

5

GA

Run

1

GA

Run

2

GA

Run

3

GA

Run

4

GA

Run

5

1 1.5 12.1 14.9 12.8 3.1 14.0 42.8 39.0 34.5 12.7 42.6

2 0.5 20.0 19.9 20.0 20.0 20.0 41.5 59.9 8.9 13.9 59.5

3 70.0 20.0 20.0 20.0 20.0 20.0 60.0 60.0 60.0 59.9 59.9

4 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

5 10.0 20.0 20.0 20.0 19.9 20.0 59.9 59.8 55.9 59.3 59.8

6 0.5 20.0 20.0 20.0 20.0 20.0 15.7 6.3 36.4 32.6 14.0

7 1.0 7.6 15.6 7.0 14.7 12.5 14.8 42.3 46.2 25.9 57.7

8 0.5 19.8 19.9 19.8 19.9 19.7 59.7 59.7 59.3 59.7 60.0

9 0.5 20.0 20.0 20.0 20.0 20.0 60.0 60.0 59.9 59.9 60.0

10 80.0 20.0 20.0 20.0 20.0 20.0 23.7 23.9 25.0 23.9 24.9

11 20.0 19.6 18.8 19.9 18.3 18.6 56.2 59.7 59.6 58.5 49.9

12 70.0 20.0 20.0 20.0 20.0 20.0 59.9 59.9 59.8 59.9 59.9

13 20.0 7.9 13.8 11.2 13.2 6.4 31.4 49.4 38.8 43.3 41.3

14 1.5 5.4 4.7 11.6 11.0 8.7 17.7 30.3 33.9 26.4 36.4

15 60.0 20.0 20.0 20.0 20.0 20.0 60.0 59.9 59.9 59.9 60.0

16 100.0 19.9 19.9 19.8 19.9 19.8 59.7 59.9 59.7 60.0 59.8

17 1.5 7.2 5.1 3.9 15.5 11.9 29.8 43.8 31.7 11.2 25.2

18 1.5 6.3 6.2 9.0 4.8 11.9 30.4 22.0 34.7 25.1 29.7

19 30.0 17.6 17.7 18.3 16.0 10.9 50.8 57.8 47.6 52.6 52.8

20 20.0 19.1 18.1 20.0 19.3 19.0 0.5 0.5 0.1 0.2 0.5

21 1.5 3.9 6.5 6.6 10.7 5.7 39.7 28.4 27.5 26.7 20.7

22 35.0 19.6 20.0 19.9 19.3 19.8 0.5 0.9 0.6 0.1 0.8

23 35.0 19.8 19.8 19.6 19.7 19.8 21.5 23.3 8.0 5.6 30.4

24 45.0 7.9 8.3 5.7 8.9 5.9 0.1 0.1 0.0 0.0 0.0

25 35.0 18.1 18.4 18.8 19.0 17.3 46.0 47.9 15.5 30.6 42.9

26 40.0 19.9 19.9 19.9 20.0 19.9 6.2 4.1 23.7 31.9 8.2

27 10.0 14.7 10.6 12.2 12.7 8.3 35.4 11.0 31.7 24.8 38.2

28 10.0 8.8 11.7 2.6 9.3 19.4 40.6 42.5 27.7 45.9 34.7



36

29 10.0 12.1 17.9 12.8 9.1 13.1 46.5 45.7 54.6 7.5 19.5

30 10.0 3.6 4.0 16.6 6.0 17.2 2.5 25.3 52.8 8.1 14.9

31 10.0 8.1 12.7 15.9 7.8 7.3 37.9 9.0 30.1 35.1 31.5

32 10.0 11.5 15.2 16.4 10.6 13.2 37.5 19.0 32.9 41.6 28.0

33 10.0 19.9 19.6 19.9 19.8 20.0 59.8 56.9 46.8 7.6 54.6

34 10.0 19.7 19.8 19.8 19.5 18.9 56.7 59.2 53.8 55.4 52.5

35 10.0 17.4 16.7 18.6 17.6 18.3 57.2 57.2 36.1 56.1 52.6

36 30.0 19.9 19.9 20.0 20.0 19.7 55.6 58.8 31.5 24.1 29.7

37 10.0 19.1 20.0 16.8 18.9 17.4 8.4 27.7 21.7 4.4 3.9

38 10.0 19.8 19.8 19.8 20.0 19.8 29.1 52.1 9.5 22.3 43.9

39 10.0 9.2 10.3 8.6 12.8 11.6 43.5 36.3 34.0 13.5 31.7

40 30.0 6.2 6.0 2.5 6.0 14.2 0.6 1.5 0.2 1.2 1.7

41 10.0 12.5 13.1 19.6 11.5 18.9 2.3 10.9 57.7 46.9 9.3

42 10.0 0.9 8.5 4.5 1.0 1.1 32.4 11.6 4.9 5.9 26.7

43 10.0 2.6 0.7 0.9 3.4 7.8 32.1 31.4 5.1 4.1 12.8

44 10.0 3.0 5.3 5.1 7.7 3.9 37.0 12.1 22.5 19.4 46.1

45 35.0 19.7 19.2 19.4 18.9 19.3 44.7 42.2 42.1 47.9 57.1

46 35.0 14.6 15.8 17.6 17.9 15.2 37.4 45.7 53.3 46.8 51.9

47 40.0 19.7 19.3 19.7 18.8 19.9 47.0 35.0 48.7 35.1 35.1

48 10.0 19.0 19.7 15.6 18.5 16.3 41.8 40.5 27.3 24.2 56.3

49 10.0 18.3 19.5 7.4 9.7 9.5 35.9 21.9 21.9 7.4 49.9

50 10.0 11.0 6.0 11.4 18.4 12.3 17.2 46.9 52.6 20.6 47.9

51 10.0 8.8 16.1 13.6 13.2 10.1 30.6 42.9 44.0 35.3 37.1

52 90.0 19.6 19.3 19.2 19.7 19.2 10.6 16.7 8.1 46.1 15.2

53 0.1 6.3 10.3 3.1 4.9 9.7 40.6 50.8 57.2 21.9 32.1

54 0.1 14.3 8.4 4.4 15.1 12.8 28.7 36.6 48.7 45.8 16.0

55 40.0 18.1 19.1 18.8 18.8 19.6 57.8 53.3 54.8 58.3 58.6

56 10.0 14.0 5.9 11.7 10.3 6.6 6.8 3.4 0.5 0.7 1.0

57 25.0 7.7 10.3 11.6 10.1 8.9 0.7 42.0 23.9 24.4 16.8

58 1.0 6.4 5.2 4.3 4.1 7.6 50.2 31.7 51.0 51.9 42.1

59 0.1 6.4 12.8 10.7 13.5 6.1 21.3 44.3 51.9 26.8 17.3

60 1.0 8.5 5.4 7.1 9.7 12.1 50.4 40.8 18.4 33.0 23.6

61 1.0 6.9 14.6 13.5 6.0 6.8 3.0 15.1 17.8 2.9 13.8

62 20.0 10.6 18.1 9.3 3.7 6.8 24.6 24.4 8.7 30.4 41.2

63 20.0 7.9 13.8 4.5 9.6 12.6 30.1 48.6 39.8 34.7 8.5

64 1.5 19.5 19.6 19.4 19.2 19.7 59.8 59.5 59.2 60.0 59.7

65 30.0 6.8 3.5 4.5 5.2 4.0 0.0 0.0 0.0 0.0 0.0
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66 1.0 18.7 18.1 19.5 16.5 15.3 59.8 59.2 59.1 59.8 59.4

67 1.0 2.8 10.5 8.4 11.6 7.6 51.9 12.8 10.0 47.9 23.4

68 1.0 19.4 19.1 19.7 19.5 19.8 59.8 59.7 59.8 60.0 60.0

69 1.2 1.4 0.0 1.2 1.1 1.6 0.3 0.5 0.2 0.2 0.5

70 1.2 2.7 4.3 3.5 3.4 4.0 3.3 4.4 3.5 3.0 4.0

71 1.2 6.0 10.8 7.1 8.6 15.9 31.6 12.0 10.6 36.7 27.1

72 1.2 1.1 5.8 3.8 2.0 0.4 2.6 1.8 5.2 8.0 2.2

73 1.2 0.5 0.3 0.0 0.3 0.2 0.7 0.3 0.7 0.4 0.7

74 1.2 6.5 12.0 11.8 10.4 5.0 17.1 46.9 14.8 43.0 12.8

75 1.2 14.2 13.7 5.4 15.6 8.6 23.3 33.1 28.5 30.1 26.7

76 40.0 20.0 20.0 20.0 20.0 20.0 59.9 60.0 60.0 60.0 60.0

77 40.0 20.0 20.0 20.0 20.0 20.0 60.0 60.0 60.0 60.0 60.0

78 40.0 20.0 20.0 20.0 20.0 20.0 60.0 60.0 60.0 60.0 60.0

79 40.0 19.9 20.0 19.9 19.9 19.9 59.6 59.9 60.0 59.8 59.9

80 1.0 9.4 7.3 4.8 12.7 12.0 25.0 33.4 17.5 31.5 21.7

81 40.0 20.0 20.0 20.0 20.0 20.0 60.0 60.0 60.0 60.0 60.0

82 650.0 19.7 19.7 19.5 19.9 19.7 59.6 59.8 59.8 59.2 59.9

83 55.0 18.5 18.6 18.3 18.7 18.9 16.3 16.8 16.5 16.5 16.3

84 650.0 19.9 19.8 19.9 19.9 19.9 59.9 59.9 59.8 59.9 59.9

85 1.5 15.0 12.0 11.2 13.0 5.0 8.5 40.0 39.0 34.1 21.9

86 650.0 20.0 20.0 20.0 20.0 20.0 60.0 60.0 60.0 60.0 60.0

87 25.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

88 60.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

89 40.0 20.0 20.0 20.0 20.0 20.0 54.7 43.0 58.4 59.1 48.5

90 20.0 11.5 2.8 12.0 11.5 5.0 21.8 35.9 25.2 38.8 23.9

91 0.1 12.8 9.1 6.0 13.8 14.9 31.4 19.3 40.5 32.7 28.6

92 0.1 4.7 8.0 13.1 6.8 15.0 19.0 29.7 14.6 19.9 53.3

93 0.1 13.1 4.5 6.2 6.3 15.4 41.7 26.7 45.1 45.3 18.9

94 0.1 13.1 13.6 10.9 8.5 3.0 42.3 40.1 10.0 34.5 37.8

95 12.0 20.0 20.0 19.9 20.0 20.0 38.5 0.4 14.1 19.7 31.0

96 13.0 20.0 20.0 20.0 19.9 19.9 0.1 0.0 16.7 0.1 30.2

97 2.0 7.9 8.1 8.5 8.1 8.6 8.6 11.0 16.9 4.8 25.8

98 1.0 19.3 18.2 16.0 19.9 19.1 42.6 21.3 28.4 16.6 43.2

99 0.8 3.5 0.2 0.0 2.2 0.1 0.6 0.2 0.1 0.0 0.4

100 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

101 13.0 20.0 20.0 20.0 20.0 20.0 31.1 45.6 28.2 28.7 28.1

102 4.0 20.0 20.0 20.0 20.0 20.0 0.0 6.1 12.1 2.4 6.5



38

103 40.0 20.0 20.0 20.0 20.0 20.0 60.0 59.9 59.7 59.9 59.7

104 5.0 20.0 20.0 20.0 20.0 20.0 60.0 59.9 60.0 59.9 60.0

105 10.0 20.0 20.0 19.9 19.9 19.8 59.7 59.6 59.7 59.4 59.9

106 1.0 18.8 19.5 19.9 19.6 19.5 60.0 60.0 59.9 60.0 59.7

107 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

108 10.0 20.0 20.0 19.9 20.0 20.0 59.9 59.8 58.1 59.0 59.8

109 0.5 20.0 20.0 20.0 20.0 20.0 0.0 0.0 0.0 0.0 1.7

110 1.0 20.0 20.0 20.0 20.0 20.0 20.2 17.2 0.0 11.1 0.0

111 4.0 19.9 19.9 19.9 19.9 20.0 50.7 30.0 38.0 56.0 59.5

112 4.0 20.0 20.0 20.0 20.0 20.0 0.4 0.0 2.2 0.0 0.1

113 1.0 20.0 20.0 20.0 20.0 20.0 60.0 60.0 59.9 59.8 5.8

114 1.0 19.9 20.0 19.8 19.9 19.8 59.8 59.9 59.0 59.7 59.9

115 3.0 0.0 2.0 4.0 0.7 3.7 0.4 0.5 2.2 3.0 1.7

116 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

117 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

118 0.1 13.1 13.3 13.0 12.8 12.9 9.7 9.5 8.6 8.1 6.7

119 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

120 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

121 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

122 0.5 17.1 17.7 16.3 17.9 19.3 59.5 59.8 59.6 57.4 59.7

123 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

124 1.5 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

125 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

126 1.0 16.9 13.5 13.8 7.7 6.4 43.7 34.0 28.4 34.9 14.4

127 0.5 8.4 14.8 14.7 8.7 18.6 58.4 58.9 56.1 56.5 57.8

128 1.0 18.9 18.4 19.4 19.0 18.8 7.9 20.1 10.8 47.0 5.4

129 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

130 2.0 19.7 16.4 17.6 14.6 18.2 38.8 38.3 25.6 29.0 21.4

131 2.0 15.0 13.5 18.1 8.4 16.6 38.0 54.4 31.5 49.8 22.6

132 2.0 11.9 5.5 19.8 7.7 11.4 52.2 21.9 15.5 23.4 50.4

133 2.0 11.2 9.5 16.3 15.3 13.2 54.3 23.2 19.6 32.4 56.6

134 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

135 2.0 14.7 13.4 11.3 15.3 12.9 32.4 11.1 9.4 22.9 19.5

136 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

137 55.0 20.0 20.0 20.0 20.0 20.0 40.1 30.5 22.6 24.1 37.0

138 1.0 19.8 19.4 19.7 19.6 19.7 0.6 7.6 0.1 40.4 4.5

139 55.0 20.0 20.0 20.0 20.0 20.0 57.0 47.7 57.0 53.8 48.6
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140 1.0 17.6 8.5 5.1 4.8 7.6 1.0 10.9 0.2 0.0 5.2

141 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

142 0.5 7.8 17.4 12.3 14.6 14.0 15.9 4.9 16.1 25.2 17.4

143 5.0 19.0 14.2 16.1 17.0 18.7 44.0 59.9 58.3 59.4 59.5

144 0.5 9.8 18.7 7.7 11.0 11.7 6.0 43.6 28.2 10.5 15.5

145 1.0 10.0 10.9 13.7 12.8 15.0 58.7 56.3 59.4 51.5 58.6

146 0.5 6.1 10.2 8.7 10.8 14.4 35.4 43.0 13.8 29.8 20.0

147 0.5 9.7 7.6 6.7 12.6 11.8 38.4 40.8 20.8 34.9 7.1

148 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

149 1.0 18.6 19.9 18.7 19.8 18.5 4.5 3.6 0.2 6.6 0.7

150 1.0 6.9 2.5 8.0 4.6 6.0 36.0 30.9 44.8 17.0 24.3

151 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

152 1.0 16.4 14.8 14.4 18.1 14.4 39.5 50.0 21.6 35.1 1.9

153 1.0 10.0 9.6 2.5 13.6 14.3 13.4 52.3 11.2 37.7 3.3

154 1.0 18.4 15.0 9.4 17.2 10.3 47.8 32.4 34.9 34.6 11.0

155 120.0 19.2 19.7 19.4 20.0 19.8 2.6 14.2 9.4 42.4 0.1

156 1.0 5.8 10.0 5.5 14.3 15.9 6.2 44.8 29.9 8.5 37.4

157 3.0 2.4 2.9 11.1 8.1 15.2 0.0 32.4 0.0 0.4 2.9

158 3.0 20.0 17.7 16.4 15.6 12.0 13.1 1.2 11.2 18.5 13.9

159 3.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

160 10.0 11.4 11.2 9.1 14.8 7.4 55.1 51.8 57.7 50.4 59.8

161 40.0 7.1 14.5 6.0 11.9 14.7 8.5 1.4 18.5 1.7 2.9

162 1.5 2.7 0.2 5.0 2.0 1.1 0.3 1.2 0.3 1.8 0.4

163 1.5 1.3 1.8 2.6 2.4 5.0 1.9 13.0 5.0 14.4 1.1

164 25.0 12.4 6.4 13.0 7.3 7.8 29.9 30.1 42.6 53.5 41.2

165 1.0 0.3 0.6 0.3 0.2 0.2 7.3 2.8 2.8 0.8 3.5

166 10.0 18.8 19.4 18.8 19.1 18.0 10.9 38.4 21.7 30.5 58.6

167 10.0 5.8 15.7 7.2 1.2 10.4 45.5 23.6 34.4 32.1 41.4

168 40.0 19.5 18.9 18.8 19.8 19.0 24.8 55.5 31.5 1.1 35.9

169 40.0 19.8 19.9 19.9 19.9 19.7 37.0 33.8 20.6 33.5 16.5

170 10.0 2.5 9.6 7.0 13.0 4.1 39.3 37.8 26.3 28.1 11.9

171 60.0 19.5 17.3 17.0 15.7 17.3 46.9 54.7 52.5 54.0 13.2

172 10.0 17.4 18.8 16.8 16.3 18.4 23.5 23.4 48.4 46.1 37.5

173 10.0 19.1 19.1 17.9 18.8 17.5 56.9 56.0 46.1 22.9 48.3

174 10.0 15.6 15.8 18.1 13.5 16.2 8.1 5.9 23.2 7.9 17.5

175 60.0 16.7 17.5 15.9 19.2 15.6 49.9 44.1 51.9 53.9 43.6

176 60.0 10.9 10.8 9.1 7.7 15.2 53.4 51.5 6.6 21.5 2.5
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177 60.0 13.0 12.7 17.4 15.8 8.8 54.8 47.2 40.5 53.1 52.5

178 60.0 6.3 0.2 5.8 2.2 0.9 7.0 5.9 2.3 20.1 3.3

179 60.0 6.4 6.3 5.1 3.2 2.6 1.7 22.9 6.4 32.2 8.3

180 1.5 0.0 0.1 0.0 0.0 0.1 44.9 43.1 43.6 17.7 20.9

181 1.5 2.3 7.1 13.6 9.3 13.9 33.6 32.9 28.1 29.8 15.8

182 1.5 12.0 10.3 6.4 13.0 10.8 36.0 34.5 40.7 38.7 8.1

183 1.5 7.4 4.4 6.5 10.8 9.8 42.2 42.6 17.1 40.8 7.8

184 1.5 14.6 7.9 14.5 12.7 7.5 32.2 34.6 22.2 13.7 27.6

185 1.5 9.7 3.4 15.5 14.7 12.7 29.5 23.8 48.9 48.9 31.0

186 1.5 11.5 3.7 16.2 14.0 10.7 53.2 24.8 33.4 50.3 25.4

187 1.5 6.0 1.6 5.0 8.5 6.5 38.5 18.1 30.9 16.0 15.0

188 1.5 5.5 8.3 15.5 15.2 10.0 32.9 27.9 14.8 19.5 39.9

189 1.5 7.4 7.8 10.5 5.5 5.9 28.6 28.2 5.3 46.1 28.0

190 1.5 3.5 12.2 4.2 6.6 5.9 46.0 12.7 21.4 26.9 30.8

191 1.5 7.9 11.2 13.6 4.4 3.8 38.9 35.5 35.6 46.1 28.2

192 1.5 3.5 13.1 9.7 4.0 10.9 18.3 28.3 42.0 14.1 59.2

193 1.5 14.3 14.9 13.9 7.2 9.1 38.0 54.9 25.3 28.1 44.6

194 1.5 10.1 9.6 8.1 18.1 17.8 13.7 36.9 9.2 41.5 30.7

195 1.5 9.7 4.8 7.4 6.7 8.2 27.5 49.2 17.6 17.1 28.7

196 1.0 15.8 8.6 11.2 17.2 17.0 28.9 4.1 19.2 29.4 2.1

197 1.0 14.4 8.9 13.8 12.3 10.9 26.3 28.9 43.3 19.0 54.8

198 1.0 7.5 2.0 11.0 7.6 9.9 38.1 45.9 16.9 14.6 43.1

199 1.0 18.7 18.3 19.2 5.8 8.1 20.3 13.8 16.2 2.2 2.9

200 1.0 1.2 6.9 15.9 5.2 5.6 4.5 32.4 37.7 48.2 12.3

201 3.0 19.6 19.2 18.3 19.2 19.1 31.8 44.4 57.7 58.2 59.5

202 1.0 8.6 12.4 9.2 11.7 9.2 23.2 34.4 34.4 30.4 26.3

203 10.0 3.6 14.4 10.5 3.1 6.1 6.5 8.5 12.6 27.9 6.9

204 10.0 4.4 12.9 9.4 4.9 9.2 6.1 2.8 8.0 5.1 3.1

205 1.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0

206 1.0 6.7 14.9 9.4 8.8 8.5 12.7 19.6 20.2 37.8 31.4

207 15.0 4.9 4.9 5.2 5.1 4.8 7.7 8.7 5.3 4.8 5.1

208 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

209 80.0 4.2 16.5 7.4 5.8 2.6 35.1 29.4 37.0 33.5 26.4

210 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

211 1.0 14.8 17.2 11.8 19.3 16.6 49.7 58.2 56.4 57.7 57.4

212 1.0 8.2 6.9 16.0 15.9 17.9 34.7 18.9 30.3 58.2 55.7

213 1.0 8.1 6.3 4.8 13.5 13.8 0.5 0.2 5.1 30.8 4.9
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214 1.0 6.7 5.5 17.2 19.1 11.3 14.8 7.6 34.3 43.1 41.2

215 1.5 18.6 15.8 13.2 17.3 10.6 48.6 50.7 3.3 29.6 52.0

216 4.0 0.0 0.1 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0

217 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

218 0.1 0.4 0.3 0.1 0.0 0.0 0.1 0.0 0.3 0.0 0.1

219 1.0 0.2 0.3 0.4 0.3 0.0 0.1 0.4 0.0 0.2 0.0

220 1.0 8.7 6.3 10.5 12.6 15.6 13.3 16.2 49.9 20.0 58.6

221 5.5 2.5 0.6 0.6 1.8 0.6 0.9 0.4 0.6 0.5 0.9

222 1.0 13.3 8.9 8.4 4.3 11.2 14.5 22.9 42.5 19.8 21.7

223 1.0 10.6 11.1 12.3 2.9 12.2 36.1 33.1 48.3 22.3 48.5

224 1.0 11.4 9.4 10.6 6.3 2.0 35.9 41.6 30.2 35.6 37.9

225 1.0 11.8 16.9 5.4 7.5 5.8 36.4 8.9 39.5 36.9 18.8

226 1.0 10.0 3.5 3.0 17.4 18.7 0.3 0.2 59.4 0.9 59.4

227 1.0 12.6 8.7 17.4 8.2 9.9 49.5 16.3 25.8 24.5 29.1

228 1.0 12.6 0.2 4.3 19.2 18.7 36.3 0.3 59.3 2.5 59.6

229 1.0 12.7 16.1 18.6 9.6 11.1 19.2 59.7 11.1 55.0 9.5

230 1.0 8.5 10.3 11.0 8.8 7.1 29.8 45.4 50.9 39.5 27.7

231 1.0 5.0 8.9 13.6 9.9 5.7 47.4 26.3 17.0 22.5 2.8

232 1.0 7.5 2.4 3.6 19.6 19.7 39.2 0.0 59.8 1.7 59.9

233 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

234 1.0 18.0 2.9 0.0 20.0 20.0 35.6 0.0 60.0 0.0 60.0

235 1.0 7.8 4.6 2.4 19.2 19.3 39.6 0.3 59.6 0.2 59.6

236 1.0 8.4 0.0 0.0 0.3 0.2 3.3 0.3 0.2 0.0 0.2

237 5.0 1.0 5.6 18.6 8.7 17.1 57.2 20.9 51.1 0.0 9.7
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