Design of the Self-Propelled Vibro-Impact Capsule System for Gastrointestinal Endoscopy - Engineering - EPSRC DTP funded PhD Studentship Ref: 2884

About the award

This project is one of a number funded by the Engineering and Physical Sciences Research Council (EPSRC) Doctoral Training Partnership to commence in September 2018. This project is in direct competition with others for funding; the projects which receive the best applicants will be awarded the funding.

The studentships will provide funding for a stipend which is currently £14,553 per annum for 2017-2018. It will provide research costs and UK/EU tuition fees at Research Council UK rates for 42 months (3.5 years) for full-time students, pro rata for part-time students.

Please note that of the total number of projects within the competition, up to 15 studentships will be filled.

Dr .Yang Liu

Streatham Campus, Exeter

Project Description

Gastrointestinal (GI) disease is the third most common cause of death, the leading cause of cancer death, and the most common cause of hospital admission. The burden of GI disease in the UK is heavy for patients, the National Health Service (NHS), and the economy. Endoscopy plays a vital role in the diagnosis of GI disorders, and the demand for GI endoscopy has doubled in the past 5 years, with on-going growth of 6.5% per annum predicted by the NHS. 

Since its introduction into clinical practice 15 years ago, capsule endoscopy has become established as the primary modality for examining the surface lining of the small intestine, an anatomical site previously considered to be inaccessible to clinicians. However, its reliance on peristalsis for passage through the intestine leads to significant limitations, in particular due to the unpredictable and variable locomotion velocity. Significant abnormalities may be missed in a minority of cases, due to intermittent high transit speeds that lead to incomplete visualisation of the intestinal surface. Furthermore, each case produces up to 100,000 still images, from which video footage is generated, taking between 30 and 90 minutes for the clinician to examine in its entirety. The procedure is therefore considered both time-consuming and burdensome for clinicians.

There is, therefore, in GI endoscopic practice a desperate need for new modalities that are safe, painless, accurate, reliable and disposable, and which require minimal training for practitioners. This project aims to design a proof-of-concept capsule prototype by integrating the vibro-impact self-propulsion technique, and to explore the feasibility of such innovation for the next generation of endoscopy, i.e. the self-propelled capsule endoscopy.

The selected PhD student will work on the design of the vibro-impact capsule prototype (including miniaturized actuator, wireless power supply, integration of various miniaturized sensors, and drug delivery module) and experimental testing rig mimicking the environment of human small intestine by considering the nature peristalsis and food fluids. Computational fluids dynamics analysis by using ANSYS Fluent will be used to understand the behaviour of the capsule, and finite element analysis by using ANSYS will also be required to evaluate the influence of the vibrational behaviour of the capsule on the intestinal wall and the consequent causes on patients.

The PhD candidate will have the opportunity to work with the clinicians in the Royal Devon and Exeter NHS Foundation Trust (RDEFT), so frequent travel between the University of Exeter and RDEFT will be required. 

The candidate with the knowledge of applied nonlinear dynamics, having the experience of mechanical and electronic design, and desiring to contribute novel healthcare technology would extremely suitable for this position.

Entry Requirements
You should have or expect to achieve at least a 2:1 Honours degree, or equivalent, in Mechanical/Electronic Engineering. Experience in experiment and prototype design is desirable.

The majority of the studentships are available for applicants who are ordinarily resident in the UK and are classed as UK/EU for tuition fee purposes.  If you have not resided in the UK for at least 3 years prior to the start of the studentship, you are not eligible for a maintenance allowance so you would need an alternative source of funding for living costs. To be eligible for fees-only funding you must be ordinarily resident in a member state of the EU.  For information on EPSRC residency criteria click here.

Applicants who are classed as International for tuition fee purposes are NOT eligible for funding. International students interested in studying at the University of Exeter should search our funding database for alternative options.


Application deadline:10th January 2018
Value:3.5 year studentship: UK/EU tuition fees and an annual maintenance allowance at current Research Council rate. Current rate of £14,553 per year.
Duration of award:per year
Contact: Doctoral

How to apply

You will be required to upload the following documents:
•       CV
•       Letter of application outlining your academic interests, prior research experience and reasons for wishing to
        undertake the project.
•       Transcript(s) giving full details of subjects studied and grades/marks obtained.  This should be an interim
        transcript if you are still studying.
•       If you are not a national of a majority English-speaking country you will need to submit evidence of your current
        proficiency in English.  For further details of the University’s English language requirements please see

The closing date for applications is midnight (GMT) on Wednesday 10 January 2018.  Interviews will be held at the University of Exeter in late February 2018.

If you have any general enquiries about the application process please email:
Project-specific queries should be directed to the supervisor.

During the application process, the University may need to make certain disclosures of your personal data to third parties to be able to administer your application, carry out interviews and select candidates.  These are not limited to, but may include disclosures to:

• the selection panel and/or management board or equivalent of the relevant programme, which is likely to include staff from one or more other HEIs;
• administrative staff at one or more other HEIs participating in the relevant programme.

Such disclosures will always be kept to the minimum amount of personal data required for the specific purpose. Your sensitive personal data (relating to disability and race/ethnicity) will not be disclosed without your explicit consent.