Example Question Answers

1. We have,

$$
\frac{4 x^{2}+2}{x^{3}-4 x^{2}+4 x+2 x^{2}-8 x+8}
$$

Factorising the denominator gives,

$$
\frac{4 x^{2}+2}{(x+2)(x-2)^{2}}
$$

We then separate this into partial fractions as follows,

$$
\begin{aligned}
\frac{4 x^{2}+2}{(x+2)(x-2)^{2}} & =\frac{A}{x+2}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}} \\
& =\frac{A(x-2)^{2}+B(x+2)(x-2)+C(x+2)}{(x+2)(x-2)^{2}}
\end{aligned}
$$

Equating the resulting numerators gives,

$$
4 x^{2}+2=A(x-2)^{2}+B(x+2)(x-2)+C(x+2)
$$

We then substitute in $x=-2$,

$$
\begin{aligned}
16 A & =18 \\
A & =\frac{18}{16}=\frac{9}{8}
\end{aligned}
$$

Similarly substituting in $x=2$ gives,

$$
\begin{aligned}
4 C & =18 \\
C & =\frac{18}{4}=\frac{9}{2}
\end{aligned}
$$

Now comparing coefficients of x^{2} we get,

$$
A x^{2}+B x^{2}=4 x^{2}
$$

Substituting in $A=\frac{9}{2}$ gives,

$$
\begin{aligned}
\frac{9}{2} x^{2}+B x^{2} & =4 x^{2} \\
B & =\frac{23}{8}
\end{aligned}
$$

Therefore our final answer is,

$$
\frac{4 x^{2}+2}{(x+2)(x-2)^{2}}=\frac{9}{8(x+2)}+\frac{23}{8(x-2)}+\frac{9}{2(x-2)^{2}}
$$

2. We start from the equation in polar coordinates,

$$
4 r^{2}+r^{3} \cos \theta-3=r \sin \theta
$$

We know $x^{2}+y^{2}=r^{2}, x=r \cos \theta$ and $y=r \sin \theta$, so we try to make our equation include terms of this form.

$$
4 r^{2}+r^{2}(r \cos \theta)-3=r \sin \theta
$$

So we can now substitute in for the terms we know.

$$
\begin{aligned}
4\left(x^{2}+y^{2}\right)+\left(x^{2}+y^{2}\right) x-3 & =y \\
\left(x^{2}+y^{2}\right)(4+x) & =y+3
\end{aligned}
$$

And this is our final equation in terms of Cartesian coordinates (x, y).
3. We have $s=103-t^{5} e^{-t}$, differentiating this gives,

$$
\begin{aligned}
\frac{d s}{d t} & =-5 t^{4} e^{-t}+t^{5} e^{-t} \\
& =e^{-t} t^{4}(t-5)
\end{aligned}
$$

Setting this derivative to zero gives either $t=0$ or $t=5$ as our solutions.

$$
\begin{aligned}
\frac{d^{2} s}{d t^{2}} & =-20 t^{3} e^{-t}+5 t^{4} e^{-t}+5 t^{4} e^{-t}-t^{5} e^{-t} \\
& =-20 t^{3} e^{-t}+10 t^{4} e^{-t}-t^{5} e^{-t}
\end{aligned}
$$

Substituting in $t=5$ gives $\frac{d^{2} s}{d t^{2}}<0$ so the maximum occurs at $t=5$.
We now substitute this back into our equation for s to get the maximum speed of the car,

$$
\begin{aligned}
s & =103-(5)^{5} e^{-5} \\
& =103-21.056 \\
& =81.9
\end{aligned}
$$

so the maximum speed is 81.9 mph which occurs at time $t=5$.
4.

$$
\begin{aligned}
\int_{x=1}^{3} \int_{y=1}^{4 x} x y^{2}-3 x^{2}+4 y d y d x & =\int_{x=1}^{3}\left[\frac{x y^{3}}{3}-3 x^{2} y+2 y^{2}\right]_{1}^{4 x} d x \\
& =\int_{x=1}^{3} \frac{64 x^{4}}{3}-12 x^{3}+35 x^{2}-\frac{x}{3}-2 d x \\
& =\left[\frac{64 x^{5}}{15}-\frac{12 x^{4}}{4}+\frac{35 x^{3}}{3}-\frac{x^{2}}{6}-2 x\right]_{1}^{3} \\
& =\frac{16358}{15}
\end{aligned}
$$

5. (a) $\nabla \cdot \mathbf{F}=\frac{d\left(y^{2}\right)}{d x}+\frac{d(-2 x)}{d y}+\frac{d(x y)}{d z}=0$
(b)

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\hat{\mathbf{i}}\left(\frac{d(x y)}{d y}-\frac{d(-2 x)}{d z}\right)-\hat{\mathbf{j}}\left(\frac{d(x y)}{d x}-\frac{d\left(y^{2}\right)}{d z}\right)+\hat{\mathbf{k}}\left(\frac{d(-2 x)}{d x}-\frac{d\left(y^{2}\right)}{d y}\right) \\
& =x \hat{\mathbf{i}}-y \hat{\mathbf{j}}-(2+2 y) \hat{\mathbf{k}}
\end{aligned}
$$

(c)

$$
\nabla f=\left(\frac{d f}{d x}, \frac{d f}{d y}, \frac{d f}{d z}\right)=\left(2 x y, x^{2}, 3 z^{2}\right)
$$

6. We have,

$$
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}-14 y=10 e^{3 x}
$$

We first solve the homogeneous ODE by letting $y=e^{m x}$, this gives:

$$
\begin{aligned}
m^{2}+5 m-14 & =0 \\
(m+7)(m-2) & =0
\end{aligned}
$$

so $m=-7$ or $m=2$ and our complementary function is,

$$
y_{C F}=A e^{-7 x}+B e^{2 x}
$$

We now try $y=C e^{3 x}$ to try and find the particular integral, this gives

$$
\begin{aligned}
9 C e^{3 x}+15 C e^{3 x}-14 C e^{3 x} & =10 e^{3 x} \\
10 C e^{3 x} & =10 e^{3 x} \\
C & =1
\end{aligned}
$$

so our particular integral is

$$
y_{P I}=e^{3 x}
$$

Adding the CF and PI gives our general solution,

$$
y=A e^{-7 x}+B e^{2 x}+e^{3 x}
$$

7. $\frac{\partial f}{\partial x}=3 x^{2} y-4 x z$
$\frac{\partial f}{\partial y}=x^{3}+z^{2}$
$\frac{\partial f}{\partial z}=2 z y-2 x^{2}$
$\frac{\partial^{2} f}{\partial x^{2}}=6 x y-4 z$
$\frac{\partial^{2} f}{\partial x \partial y}=3 x^{2}$
$\frac{\partial^{2} f}{\partial y \partial z}=2 z$
8. We use De Moivre's theorem!

$$
z=2\left[\cos \left(\frac{\pi}{7}\right)+j \sin \left(\frac{\pi}{7}\right)\right]
$$

So

$$
z^{7}=2^{7}\left[\cos \left(\frac{7 \pi}{7}\right)+j \sin \left(\frac{7 \pi}{7}\right)\right]=128[\cos (\pi)+j \sin (\pi)]=-128+128 j
$$

9. A vector to the line is $\left(\begin{array}{l}2 \\ 5 \\ 1\end{array}\right)$. A vector parallel to the line is $\left(\begin{array}{l}7 \\ 4 \\ 3\end{array}\right)-\left(\begin{array}{l}2 \\ 5 \\ 1\end{array}\right)=\left(\begin{array}{c}5 \\ -1 \\ 2\end{array}\right)$. So $\mathbf{r}=\left(\begin{array}{l}2 \\ 5 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}5 \\ -1 \\ 2\end{array}\right)$ is the parametric form of the equation.

This gives us the system of equations: $x=2+5 \lambda, y=5-\lambda, z=1+2 \lambda$

Rearrange these to make λ the subject to obtain: $\lambda=\frac{x-2}{5}=5-y=\frac{z-1}{2}$
Hence $\frac{x-2}{5}=5-y=\frac{z-1}{2}$ is the Cartesian vector equation of the line.
10. (a)

$$
\begin{aligned}
3 A-B & =3\left(\begin{array}{cc}
2 & 1 \\
-6 & 7
\end{array}\right)-\left(\begin{array}{cc}
1 & 0 \\
-5 & 9
\end{array}\right) \\
& =\left(\begin{array}{cc}
6-1 & 3-0 \\
-18+5 & 21-9
\end{array}\right) \\
& =\left(\begin{array}{cc}
5 & 3 \\
-13 & 12
\end{array}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
A B & =\left(\begin{array}{cc}
2 & 1 \\
-6 & 7
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-5 & 9
\end{array}\right) \\
& =\left(\begin{array}{cc}
(2 \times 1)+(1 \times-5) & (2 \times 0)+(1 \times 9) \\
(-6 \times 1)+(7 \times-5) & (-6 \times 0)+(7 \times 9)
\end{array}\right) \\
& =\left(\begin{array}{cc}
-3 & 9 \\
-41 & 63
\end{array}\right)
\end{aligned}
$$

(c)

$$
\begin{aligned}
B^{-1} & =\frac{1}{\operatorname{det}(B)}\left(\begin{array}{ll}
9 & 0 \\
5 & 1
\end{array}\right) \\
& =\frac{1}{9-0}\left(\begin{array}{ll}
9 & 0 \\
5 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
\frac{5}{9} & \frac{1}{9}
\end{array}\right)
\end{aligned}
$$

(d) We start by finding the eigenvalues of A,

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{cc}
2-\lambda & 1 \\
-6 & 7-\lambda
\end{array}\right| \\
& =(2-\lambda)(7-\lambda)-(1)(-6) \\
& =\lambda^{2}-9 \lambda+20 \\
& =(\lambda-4)(\lambda-5) \\
& =0
\end{aligned}
$$

This gives $\lambda=4$ or $\lambda=5$, which are therefore the eigenvalues of A.
Next we find the eigenvalues of B,

$$
\begin{aligned}
|B-\lambda I| & =\left|\begin{array}{cc}
1-\lambda & 0 \\
-5 & 9-\lambda
\end{array}\right| \\
& =(1-\lambda)(9-\lambda)-(0)(-5) \\
& =\lambda^{2}-10 \lambda+9 \\
& =(\lambda-9)(\lambda-1) \\
& =0
\end{aligned}
$$

This gives $\lambda=9$ or $\lambda=1$, which are therefore the eigenvalues of B.
11. (a) We use the IVT to show that a root exists between $x=-2$ and $x=-3$,

$$
\begin{aligned}
f(-2) & =(-2)^{3}-5(-2)+2 \\
& =-8+10+2 \\
& =4 \\
f(-3) & =(-3)^{3}-5(-3)+2 \\
& =-27+15+2 \\
& =-10
\end{aligned}
$$

so $f(-2) f(-3)=4 \times-10=-40<0$ therefore there is a root between -2 and -3 .
(b) The formula for Newton Raphson is:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

so substituting in our f we get

$$
\begin{aligned}
x_{2} & =-2-\frac{(-2)^{3}-5(-2)+2}{3(-2)^{2}-5} \\
& =-2-\frac{4}{7} \\
& =-\frac{18}{7} \\
& =-2.571
\end{aligned}
$$

Repeating this process we get $x_{3}=-2.426$.
12. (a) $P(A \cup B)=P(A)+P(B)-P(A \cap B)=0.4+0.5-0.15=0.75$
(b) $P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap c)-P(B \cap C)+-P(A \cap B \cap C)=$ $0.4+0.5+0.5-0.15-0.2-0.2+0.1=0.95$
(c) Recall that $P\left(A \cap C^{\prime}\right)+P(A \cap C)=P(A)$. So $P\left(A \cap C^{\prime}\right)=P(A)-P(A \cap C)$

Then $P(A)+P\left(C^{\prime}\right)-P\left(A \cap C^{\prime}\right)=0.4+(1-0.5)-(0.4-0.2)=0.7$
(d) $P(A \cup B \mid C)=\frac{P((A \cup B) \cap P(C))}{P(C)}=\frac{P((A \cap C)+P(B \cap C)-P(A \cap B \cap C)}{0.5}$
$=\frac{P((A \cup B) \cap P(C))}{0.5}=\frac{0.2+0.2-0.1}{0.5}=\frac{0.3}{0.5}=0.6$
13. (a) A type I error is when you reject the null hypothesis when it is true whereas a type II error is a failure to reject the null hypothesis when it is false.
(b) Let θ denote the expected weight. We test the null hypothesis $H_{0}: \theta=50$ against the alternative hypothesis $H_{1}: \theta \neq 50$ using a z-test. The test statistic is

$$
z=\frac{\bar{x}-50}{\frac{\sigma}{\sqrt{n}}}=\frac{49.95-50}{\frac{0.1}{\sqrt{16}}}=-2.0
$$

with null distribution $N(0,1)$. We only reject H_{0} in favour of H_{1} if $|z|>c$ and here $c=1.96$, the upper 2.5% quantile of the $N(0,1)$ distribution. Since $|z|>c$, we reject H_{0} and conclude that there is sufficient evidence to disprove the companys claim.

