

Varying the payment vehicle in choice experiments: using non-monetary vs. monetary payments in low income countries

Keila Meginnis^a

Post-Doctoral Research Assistant

LEEP 2019

Co-Authors Nick Hanley^a, Lazaaro Musumbuji ^b, Poppy Lamberton^a

^a University of Glasgow
 ^b Medical Research Council/Uganda Virus Research Institute

Research Question

- Explore the effects of using monetary vs. labour in discrete choice experiments in LMICs
- Problem with monetary payments:
 - Cash constraints \rightarrow possible bias arise
 - Underestimate willingness of contribution
 - Exchanges may occur without money
 - Unfamiliar scenarios may appear unrealistic, lead to increased hypothetical bias
- >Administer a DCE in rural Uganda
- Include both labour and money numeraires in choice sets

Previous research

Time or Money:

- Gibson et al (2017); 🦾 = 💰
- Abramson et al (2011); 🦾 = 0.2 💰
- Rai and Scarborough (2015); 🦾 = 0.85 💰

Time and Money:

- Rai and Scarborough (2012); L
 = 0.47
- de Rexende et al. (2015); 🦾 = 0.26 (0.52) 💰

Study site: Mayuge, Uganda

- Understand attitudes and behaviours towards policy interventions regarding water access and health education
- →to reduce infection of schistosomiasis

Schistosomiasis

- Water borne parasite
- 240 million people live with Schistosomiasis
- Symptoms: fever, fatigue, prone to illness, reduce cognitive development, etc.
- \rightarrow Reduced quality of life
- World Health Organisation: mass drug administration
 - Distribution
 - Not 100% effective
 - High rate of reinfection

Cycle

Cycle

Cycle

- New water sources
- Improve water
- Education

Anthropological Research

New water source:

X

New water access points:

Weekly labour:

Summary Stats

7703 UGX = \$2.03 Median 4000 UGX = \$1.07

Variables	Average
Female	0.47
Year of Education	
Less than Primary	0.515
Primary	0.38
Ordinary Secondary	0.08
Advanced Secondary	0.0094
Tertiary	0.0024
Household size	6.35
Children under 18	3.67
Children under 5	1.36
Occupation	
Fisherfolk	0.25
Farmer	0.44
Local Business	0.17
Income	7703

Summary Stats

Variable	Percent
Has heard of bilharzia	99%
How do you contract bilharzia:	
- Drinking lake water	58%
 Contact with contaminated water 	55%
- Open defaecation	25%
Lake was most visited water source in the last week	59%
Length of time with hands or feet submerged	
- Less than 5 minutes	25%
- 5-15 minutes	12%
- 16-30 minutes	8%
- 31+ minutes	30%

Bath (7) Drink (5) FetchWater (74) Fish (31) Play (7) Porter (1) WashClothes (29) WashDishes (4) WashHands (11) WashVehicle (2)

Random Parameters Model

Utility function

 β_{1i} New Water Source + β_{2i} Landing Sites + β_{3i} Education + β_{4i} Monthly Fee + β_{4i} Weekly Labour + β_{5i} None + $\beta'(z_n * Fee)$ $+ \varepsilon_{ni}$

Co-variates

 $Z_n = (knowledge, submerged, income, female)$

Knowledge = 1 if knows how one contracts schistosomiasis Submerged = 1 if spends 15+ minutes in lake water Income = arc sign of income Female = 1 if female

RPL-Model

	CLM	RPL
Water Source		
Tap 2 jerry cans	+++	+++
Tap 10 jerry cans	+++	+++
Lake filtration- non-potable		
Lake filtration- potable	+++	+++
Landing Sites	+++	+++
Sensitise		
Murals	+++	+++
Public radio	+++	+++
VHT talks	+++	+++
None	-	
Fee		insig.
Labour	insig.	
Interactions with Fee		
Knowledge		
Submerge	++	insig.
Income	insig.	Insig.
Female		insig.
Log-likelihood	-1821.703	-1685.975

RPL-Model

	CLM	RPL
Water Source		
Tap 2 jerry cans	+++	+++
Tap 10 jerry cans	+++	+++
Lake filtration- non-potable		
Lake filtration- potable	+++	+++
Landing Sites	+++	+++
Sensitise		
Murals	+++	+++
Public radio	+++	+++
VHT talks	+++	+++
None		
Fee		insig.
Labour	insig.	
Interactions with Fee		
Knowledge		
Submerge	++	insig.
Income	insig.	Insig.
Female		insig.
Log-likelihood	-1821.703	-1685.975

Willingness to pay/work

$$WTP = \frac{\beta_k + \sigma_k * \phi_k}{\beta_{fee}}$$
; $WTW = \frac{\beta_k + \sigma_k * \phi_k}{\beta_{labour}}$; WTW * 4.3

	WTP Monthly	WTW Weekly	WTW Monthly
Water Source			
Tap 2 jerry cans	14110.25	14.88	64.01
Tap 10 jerry cans	24975.16	26.35	113.3
Lake filtration- non-potable	-8026.18	-8.47	-36.41
Lake filtration- potable	14558.95	15.36	66.05
Landing Sites	2552.83	2.69	11.58
Sensitise			
Murals	6052.63	6.39	27.46
Public radio	6555.61	6.92	29.74
VHT talks	11351.92	11.98	51.5
None	-11896.76	-12.55	-53.97

Shadow wage rate

$\frac{WTP}{WTW} = \frac{14110 \, UGX/Month}{64.01 \, Hours/Month} =$

220.43 UGX/hour

- Assuming working 10 hours per day, average wage = 400 UGX/hour
- Shadow wage rate = 55% market wage rate

Results from Latent Class Model

- 4-classes
- Gender, Income, Knowledge, Submerged \rightarrow Covariates

Attribute	Class1	Class2	Class3	Class4
Monthly Fee			+++	++
Weekly labour		insig.	insig.	
None	insig.			insig.
Class Size	0.21	0.10	0.58	0.10
Log Liklihood -1582 77				

Conclusions

- Large portion of respondents have positive marginal utility for fee...
 - Confusion?
 - Strategic bias?
 - Paying for goods signals quality
- Is labour appropriate?
 - 21% dislike both money and labour
 - 10% prefer to pay in money over labour
 - $L_{b} = 0.55$ (slightly less in Latent Class Model)

Thank you!

ACKNOWLEDGEMENTS

University of Glasgow Dr Poppy Lamberton The Lamberton Lab Vector Control Division Ministry of Health, Uganda Dr Edridah Muheki Tukahebwa

Dr Lucy Pickering Prof Nick Hanley Prof Sally Wyke MRC/UVRI, Uganda Prof Janet Seeley Dr Agnes Ssali Edith Nalwadda Lazaro Mujumbusi

Bugoto, Bwondha and Musubi Communities

Research Team: Eunice, Geoffrey, Laala, Nicholas, Beatrice

