

Spatial Optimization of Energy Infrastructure

Gemma Delafield

Dr Greg Smith, Prof Brett Day & Prof Ian Bateman, University of Exeter

Energy models

Energy models tell us how much energy we need

But NOT where energy should be located

Land use conflicts

Excluding areas of land

agricultural land

National Parks & AONB

High quality ag land NP & AONB

My research objectives

- 1) Develop a spatial cost minimization model to identify where the **optimal locations for new energy infrastructure** across the UK
- 2) Apply the model to determine the cost to the energy system when areas of land are excluded from energy development to protect food security / biodiversity

Model development

How do we spatialize UKTM output?

Gridded model

Which combination of cells deliver the energy system at the least cost?

Spatial optimization model

Spatial optimization techniques

- Connecting to transmission network
 - Dijkstra's algorithm
- Solar-Wind
 - Greedy algorithm or Hungarian algorithm
- Bioenergy
 - Mixed integer linear programming
 - Greedy algorithm
- Solar-Wind-Bioenergy
 - Iterative Hungarian and Greedy algorithm

Spatial optimization: Bioenergy

Application of model Preliminary findings

Energy-Energy Conflicts

1 in 5 of the good locations for solar farms were also good for growing the bioenergy crop *Miscanthus*

Solar ●
Wind ●
Bioenergy power plant ★
Bioenergy crop ●

Energy-Food Conflicts

Exclude:

- Nothing

Spatial footprint	2.25M ha
Annualised cost	£1.81 billion

Spatial footprint	2.32M ha (+3%)
Annualised cost	£1.84 billion (+23M)

Energy-Environment Conflicts

Future focus: Externalities

Include these values alongside the financial costs when choosing energy generation locations

Thank you for listening!

Key messages:

- 1. Spatial optimization allows us to improve our understanding of how energy futures might impact the UK's landscape.
- Determining the implied costs of excluding land from energy development can help inform decisionmaking.

