Skip to main content

Affiliate Investigators

LSI Affiliates are Principal Investigators in the University of Exeter who have close links with LSI through collaborative projects, joint grants or co-supervised students.

My research interests include the mathematics and applications of nonlinear dynamical systems, especially synchronization problems, bifurcations, computational modelling, spatially extended systems and nonautonomous systems. The applications to living systems I am interested in include biophysical modelling (active transport and organelle dynamics in cell biology), cognition (perceptual rivalry, computational aspects of networks), molecular networks, functional dynamics in neural and biomedical systems and tipping points in nonautonomous systems.

Read more »

 

My research focuses on how the interactions of filamentous fungal pathogens with their physical environment results in invasive growth behaviour.  The ability to penetrate substrates is fundamental across most environmental fungi but, in the context of human disease, the ensuing tissue damage leads to hyper-inflammation, organ failure and mortality.  The use of microfabricated topographies has allowed us to characterise specific growth behaviours at the whole-organism level and start to dissect the molecular machinery required for their regulation, such as the ability to sense external contact and respond to small electric fields.  These in vitro tools, coupled with fluorescence microscopy and live-cell imaging, are helping us to understand the key features of pathogen cell biology that are required for tissue penetration during invasive fungal disease. 

Read more Bioscience »

Read more MRC-CMM »

Professor Nigel Cairns, an internationally-recognized neuropathologist, is working with colleagues at LSI, Drs Vicki Gold and Betram Daum, to more fully characterize the atomic structure of misfolded proteins, the pathologic building blocks of most neurodegenerative diseases. Unravelling these misfolded proteins may reveal novel targets for therapeutic intervention where none currently exists.

Professor Nigel Cairns is also developing collaborations with Drs JJ Phillips and Daniel Kattnig.

Read more »

Dr Creaser's research focuses on developing and using tools from dynamical systems theory to understand problems in healthcare. She currently holds an MRC Skills Development Fellowship to identify patient-specific brain dynamics markers in Post-Traumatic Stress Disorder (PTSD) and Cognitive Treatment Response. She works closely with colleagues in the LSI to use mathematical and computational methods to analyse large scale brain recordings from people with depression and PTSD. Together with Professor Tsaneva-Atanasova, she developed a network modelling framework to capture and explain seizure onset patterns at multiple spatial scales including seizures captured by clinical scalp recordings and generated by in-vitro experiments. 

Read more »

Read more website »

 

My research

My group works on the pathogenic interactions between fungal pathogens and the human host. Our main interest is understanding the structure and function of the fungal cell wall as the natural interface between the pathogen and its host. We are investigating the ligands of the wall that are important for immune recognition and the cell wall biosynthetic processes that can be used as targets the development of antifungal drugs and antifungal vaccines. My group is supported by a Wellcome Senior Investigator Award, two Wellcome Collaborative Awards and a number of joint awards with colleagues in the MRC-CMM and LSI.

Relationships with staff in the LSI:

  • I am a co-applicant on a project called the Molecular Mechanic Initiative (MMI) supported by EPSRC Physics for Life grant led by Professor Frank Vollmer and team of co-investigators. This is using nanoparticle technologies and single molecule sensors to investigate fungal cell wall binding proteins.
  • I am a co-applicant on BBSRC equipment grant award led by Professor Gaspar Jekely that funds cryo-fixation/ freeze-substitution equipment underpinning high resolution electron microscopy and tomography.
  • I am working with Dr Caitlin Chimerel investigating the pharmacodynamics of AmBisome (and antifungal drug that is delivered in a liposomal formulation), using cavity enhanced absorption spectroscopy that has th potential to make single cell measurements of drug translocation.
  • I am beginning to investigate how novel microfluidic methodologies can be applied to study fungus-drug interactions with a new team of LSI researchers.

Read more »

Professor Jon Mill is Professor of Epigenetics in the College of Medicine and Health, further information about his work can be found on his group's epigentics website or on his personal profile page. 

"Francesca Palombo is an Associate Professor of Biomedical Spectroscopy at the School of Physics and Astronomy. Dr Palombo is a pioneer in optical elastography to study biomechanics on a subcellular scale. She was a postdoctoral research associate at Imperial College London and UEA before joining Exeter as a lecturer in 2013. She has a strong vibrational spectroscopy background which spans frequency-domain and time-resolved laser spectroscopy, imaging and microscopy techniques. Her core biomedical studies focus on disease detection, especially cancer and dementia, along with fundamental biochemistry and biophysics."

Read more »

I am a NERC funded Independent Research Fellow (Professor), working on the evolutionary ecology of host-parasite interactions. My lab studies how ecological variables drive the evolution of various immune strategies in bacteria, with an emphasis on CRISPR-Cas adaptive immune systems, and examines their coevolutionary consequences. Bacteria encode lots of different immune mechanisms, and their molecular basis has been studied in great detail, which makes them an ideal model system to study more generally how ecology drives the evolution of different defenses. These bacterial defense mechanisms include CRISPR-Cas, which I studied at the molecular level during the start of my scientific career, surface modification, restriction modification, abortive infection and prokaryotic Argonaute.

Read more »

My primary research interest lies in understanding the developmental phenomenon of metamorphosis in marine animals. Many marine animals, including sponges, corals, jellyfish, shellfish, crustaceans, worms, sea urchins, starfish and sea squirts, have a life cycle which includes a free-swimming larval stage that must find the ideal location to settle down on the seafloor and undergo metamorphosis to an adult form. I use molecular biology approaches to study the sensory and neuroendocrine systems of marine invertebrate larvae to understand how they interact with their surrounding environment to navigate through the ocean and regulate the timing of their metamorphic transition. These larvae are crucial to the survival, connectivity and evolution of marine populations.

My background lies in marine biology and molecular biology. Following a BSc in Marine Biology at the University of Queensland, Brisbane, Australia, I carried out a BSc Hons research project investigating natural variation in gene expression during sea squirt larval development. During my PhD, I studied the interplay of genes and environment in the metamorphosis of tropical abalone, an emerging aquaculture species. I then joined the Max Planck Institute for Developmental Biology in Tübingen, Germany, as a postdoctoral researcher working on neuropeptide signalling in the life cycle of marine worms, sea anemones, jellyfish and placozoans. Following a move to the University of Exeter's new Living Systems Institute with my postdoctoral research lab in 2018, I was awarded a BBSRC David Phillips Fellowship in late 2019. Commencing May 2020, this fellowship allows me to build my independent research group in the Exeter Biosciences.

Read more »

 

Dr Yang is a Lecturer in the Institute of Biomedical and Clinical Science, College of Medicine and Health. Her research focuses on how the nervous system regulates endocrine pancreas development and the energy homeostasis.

Read more »