Aggregating trans-national diffusion mechanisms between West European far right parties: Introducing a three-step model

Steven Van Hauwaert (CEVIPOF, Sciences Po Paris / Northwestern University)
Pascal Perrineau (CEVIPOF, Sciences Po Paris)

Paper prepared for presentation at the annual conference of the Midwest Political Science Association, Chicago, April 11-14, 2013

Abstract
Far right party (FRP) literature often refers to different FRPs as independent units, even upon the analysis of their development. The frequent overlook of processes and mechanisms between them can be referred to as Galton’s paradox of interdependence. Parting from a null hypothesis of structural independence in the FRP development, this paper argues for its rejection by using the diffusion of the original master frame (as designed by the Front National) as its core argument. First I propose a master frame change model, which analyses how and why FRPs adopt an alternative master frame. Second, I differentiate between two core diffusion mechanisms: learning and emulation. Their characteristics, and how they influence master frame change provide an indication as to how change decisions are likely to be interdependent. Third, I discuss how the combination of a threshold model with the change model can help explain diffusion patterns between FRPs on a more aggregate level.

1. Introduction
Since the 1980s, the literature on far right parties (FRPs), and specifically the literature on their development, has become very sizeable. In the past decade, an extensive number of comparative works have also been introduced, serving as an important foundation for further research. When examining FRP development, the existing literature often parts from the core assumption of structural independence. Either it avoids the complexity of the alternative, or it assumes structural independence for analytical reasons and without proper analysis. Given evolutions such as globalisation and internationalisation, structural independence might prove increasingly unrealistic. Gilardi (2010, p.650) starts his paper on policy diffusion with the statement “Interdependence is a defining feature of politics”. In the case of FRP development, this statement is intuitive and straightforward, and appears to be supported by the restriction to Europe of the far right party (FRP) phenomenon (i.e. spatial clustering) and the common perception of FRPs as a third wave in post-war right-wing extremism (i.e. temporal clustering, see von Beyme, 1988). This is supported by the master frame similarities between most West European FRPs (Rydgren, 2005a). So, rather than assume structural

1 Master frames play the same role as collective action frames do, only on a bigger scale. They are not limited to the interests of a particular group or a set of related problems. Their scope and influence reach much further, and
independence, this paper seeks to provide an aggregated model to support and incorporate FRP interdependence. It does so by analysing how the original master frame (as designed by the FN) spread (or diffused) between FRPs.

For analytical reasons, FRPs are considered rational actors in the political continuum, who seek to maximise their utility. Based on the original specifications of Braun and Gilardi (2006), this paper designs a master frame change model that indicates according to which logic (and based on which utilitarian components) an FRP evaluates alternative master frames. The evaluation of a particular master frame does not only depend on the alternative master frame/s, but also quite possibly on how other FRPs evaluate alternative master frames. In other words, the master frame change model indicates why and how the choice between alternative master frames is an interdependent one. Since there is not just one plausible account for this, several mechanisms of diffusion can be identified. Therefore, this paper differentiates between emulation and learning mechanisms.

Eventually, the master frame change model and the operationalisation of the different mechanisms are implemented in a broader threshold model. Together, this allows a more aggregated model to not only explain how diffusion mechanisms affect the decision to adopt an alternative master frame, but also to describe how temporal and spatial variation of diffusion mechanisms can influence trans-national diffusion patterns between FRPs. Largely based on the involvement of the transmitting FRP, this paper argues that emulation is most prevalent in earlier stages of FRP development, whereas learning is a more structural mechanism that is most beneficial and often operating once an FRP has already emerged.

2. A master frame change model

A party’s master frame, and the changes of this master frame, contributes to the description of a party’s political behaviour (see Adorno et al., 1950), much like an individual’s attitudes and traits help describe its general behaviour. As a whole, a party’s behaviour can be considered an indicator of its motivations, wishes, ambitions, and aspirations. Following this, one could argue that an important component of a party’s political behaviour is the pursuit of its objectives (Müller and Strøm, 1999), or, in other words, when a party’s political behaviour changes, its objectives change as well.

are designed to attract a broader audience or deal with a broader set of problems. Contrary to collective action frames, a master frame influences and constrains the orientations and activities of other parties and can be considered a flexible and all-inclusive framework that goes beyond a set of ideologies (Snow and Benford, 1992).
Building on rational choice theory and utility maximisation (Downs, 1957; Arrow, 1987), Müller and Strøm (1999) identify three different types of party behaviour, each with a different primary objective: Vote-seeking, office-seeking and policy-seeking. Simultaneously, Harmel and Janda (1994, p.268) provide several models “to explain and predict which type of behaviour will predominate for a particular party on the basis of institutional and organisational factors” at a particular time. These models are rather dynamic in nature, and are not necessarily mutually exclusive. Rather, parties continuously adjust their behaviour, and their party goals, depending on both external and internal factors (Müller and Strøm, 1999, see also Eatwell, 2003; Mudde, 2007).

Additionally, Deschouwer (1992) discusses the need to consider more than just electoral and/or political performance as possible (primary) party goals. He describes “participatory power” and “articulating members’ wishes” as two additional motivators for party behaviour. These representation objectives are embraced by the broader concern for inter-party democracy (Bruce et al., 1991). A classic example of this is the Green movement in Germany and in Belgium. More recently, such objectives (i.e. party goals) have been reflected in the open primaries within French and Italian socio-democratic parties, the Parti Socialiste and Partito Democratico respectively (Foucher, 2012).

Specifically for FRPs, considering their prevalent authoritarian and hierarchic nature (DeClair, 1999; Gomez-Reino, 2001; Segert, 2005), this latter notion of internal democracy is not (often) considered one of its primary party goals, not even for the more accepted FRPs such as the LN and the DFP. At the same time, Mudde (2010) describes FRPs as a pathological normalcy, rather than a normal pathology (as most authors often assume), thereby indicating FRPs are not a deviation from traditional values (and the parties that represent them) but a more extreme interpretation of them. Therefore, even though FRPs’ access to governmental and/or parliamentary functions is often either limited (e.g. electoral system) or refused (e.g. cordon sanitaire), they can be perceived as ordinary vote and/or office maximisers, much like traditional parties.

This is particularly true once FRPs have consolidated into systemic political parties. One of the more recent examples of this was the FN’s 2012 bid for political and electoral power by using a clear vote maximising strategy. Similarly, the FPÖ’s ideological moderation during its period as a governmental partner can serve as an indicator of its desire to maximise its future electoral potential and return to office (Luther, 2011). More generally, FRPs’ use of populism as a core construct of its master frame indicates they are most
concerned with the electorate, and eventually its vote (regardless of whether this concern is opportunistic or not).

Often, FRPs are also important policy advocates, which can be pursued in a direct and/or indirect manner. On one hand, the increasing salience of issues favourable to FRPs has given those issues a more prominent position on the public’s agenda, which is eventually beneficial for FRPs (Arzheimer, 2009). On the other hand, over the past three decades, the FRP literature indicates an increasing influence of FRPs on traditional parties, party systems, electoral agendas, policy-making, and party strategies. All of which contribute to the realisation of policies that fall within the socio-political scope of an FRP.

An important instrument to maximise an FRP’s utility are its resources, particularly its master frame. The master frame plays an important role in an FRP’s perceived potential, its electoral attractiveness, its ideological course, and eventually, the likelihood of its political and electoral success. Therefore, it is important a master frame adjusts to its socio-political surroundings, prospective constituents and resource providers so as to maximise its payoffs and its effectiveness (Esser, 2001, Braun et al., 2007; Volden, Ting and Carpenter, 2008). Depending on which party goals are considered imperative, an FRP can develop and emphasise different aspects of its master frame. In other words, a master frame can be an important instrument of FRP change (incl. its goals and functions), which in its turn can influence an FRP’s ambitions.

Based on the combined specifications by Müller and Strøm (1999) and Deschouwer (1992), and following rational choice theory, it is possible to simplify this as follows. First, it has already been illustrated it is difficult to validate internal party democracy as a principal party objective of an FRP. Its overall influence is trivial and is therefore excluded from further analysis. Second, even though vote-maximising and office-seeking behaviour are two separate objectives, they both require FRPs to become successful in electoral terms (i.e. gain vote share). Third, if an FRP wishes to advocate its policies, it has to maximise the utility of its ideology. Combining these specifications, it is possible to distinguish between electoral and ideological objectives. More specifically, a master frame’s total payoff can be determined by its potential electoral rewards and its position in a socio-political continuum. This latter component refers to a master frame’s ideological position, which allows an FRP to advocate for or against certain policies and influence the political agenda. Together, these two components comprise the total payoff P of an arbitrary FRP’s master frame mf:

$$P_{mf} = p \cdot V_{mf} + (1-p) \cdot L_{mf} \quad 0 \leq p \leq 1$$
where V_{mf} represents the master frame’s electoral payoff, L_{mf} represents a master frame’s ideological payoff, which it obtains as a result of its socio-political location, and the coefficient p represents a probability weight.

Both parameters are weighted because their relative importance can change throughout an FRP’s development, or between FRPs. In other words, the payoffs of certain master frame components can be different throughout time and space (Strøm, 1990), and the above algebraic equation reflects this. Longitudinal variation in an FRP’s master frame can be the results of both internal (e.g. changing leadership) and external evolutions (e.g. growing salience of immigration). Spatial variation between FRPs’ master frames is usually the result of differences in political opportunities.

For example, upon its governmental participation in the early 2000s, the FPÖ adopted an office-seeking strategy, as opposed to the vote maximising strategy it had upheld throughout the 1990s (Luther, 2011). For the FN, a similar change can be noticed in 2011 (and particularly toward the 2012 French presidential election), upon the election of Marine Le Pen as party president (Liszkai, 2010; Ivaldi, 2012). For both these parties, the inherent composition of the payoff associated with electoral outcomes (i.e. coefficient p) changes. The VB’s original and self-proclaimed role in the Belgian political system was that of a ‘whip party’ (Pauwels, 2011) or that of a “stick behind the door”. Both refer to the VB’s original intention to change politics, to influence policy and to spread its master frame. However, throughout the past decades, like most consolidated FRPs, the VB has become more of a vote maximising party. Therefore, compared to its emergence, the VB’s electoral coefficient p has increased in relative importance compared to its ideological coefficient $(1 – p)$. In general, this latter scenario is the often case when elections get closer and campaigns start to become more important.

Regardless of an FRP’s primary goals (e.g. re/election, re/appointment, political influence, etc.) and the anticipated master frame payoffs, FRPs also seek to ensure a master frame is efficient in its implementation (Volden, Ting and Carpenter (2008) refer to this as the innovation’s quality or valence). Independent from its purpose, the effectiveness of a master frame indicates the degree to which it achieves the proposed outcome (i.e. payoff), or the extent to which the intended result is the actual result. Master frame effectiveness is mostly determined by the experience an FRP has with the master frame, or in other words, the master frame’s (potential) success ratio. Initially, when a potential master frame has not been adopted by another FRP, one can only speculate regarding its success and its effectiveness is relatively unknown. When one or more FRPs have adopted an alternative master frame, an
FRP looking to adopt that same master frame can assess its effectiveness based on its experience and observed success.

Combining the above parameters, the expected utility of a master frame is thus a function of its electoral payoffs, its socio-political payoffs and its master frame effectiveness. It is important to note the combination of these parameters is not necessarily probabilistic, i.e. they are not necessarily independent. This leads to three preliminary, yet important implications: (i) master frame payoffs depend on and influence its effectiveness, and vice versa, (ii) neither component automatically constitutes successful master frame diffusion, and (iii) what makes a master frame effective in one polity may have little applicability to its effectiveness elsewhere. Therefore, if P_{mf} corresponds to a master frame’s total payoff and EF_{mf} refers to its effectiveness, then the expected utility of a master mf would be:

$$E[U_{mf}] = EF_{mf} + P_{mf} \quad 0 \leq EF_{mf} \leq 1$$

It is this expected utility an FRP seeks to maximise so as to achieve its objectives. This equation indicates that effectiveness weights a master frame’s payoffs. So, the effectiveness can be interpreted as the degree of efficiency of the master frame’s payoffs. Therefore, a master frame with high payoffs that is considered rather ineffective will have a relatively low expected utility (particularly compared to the same master frame in a different context, with a higher effectiveness). For example, an FRP can uphold a relatively extreme master frame, but the expected utility of such an approach will most likely be limited since a more moderate approach has proven to be more effective in the electoral arena (Ignazi, 2003; Cole, 2005).

Given that each master frame has such an expected utility function, it is possible to take a more comparative approach and evaluate the expected utilities of alternative master frames. Since FRPs can be presumed rational choice and utility maximising agents (see also Kahneman and Tversky, 2000), when given the choice, an FRP would adopt the master frame with the highest expected utility. Given societal evolutions like globalisation, and the inherent nature of an FRP as a change agent, it would be appropriate to assume an FRP has the possibility to adopt a master frame of its choosing, i.e. there are at least two alternative master frames available to FRPs. Overall, the question then becomes if and when an FRP would adopt an alternative over its existing master frame?

For analytical simplicity, the model has been restricted to only two mutually exclusive master frames: the currently adopted master frame, and an alternative ready-to-adopt master frame. Applied to the FRP scenario, these would represent an already implemented, yet perhaps stigmatised master frame, and the FN-designed alternative, respectively. Returning
to the algebraic model, \(P_{mf2} \) represents the payoffs associated with an alternative master frame \(mf2 \), and \(EF_{mf2} \) represents its effectiveness. Similarly to the earlier specification, the expected utility function of the alternative master frame can then be described as:

\[
E[U_{mf2}] = EF_{mf2} + P_{mf2} \quad \quad 0 \leq EF_{mf2} \leq 1
\]

Given its rational character, an FRP will only change its master frame if the perceived expected utility of a new master frame \(mf2 \) (i.e. change) outweighs the expected utility of the currently adopted master frame \(mf1 \) (i.e. the status quo). In other words if:

\[
E[U_{change}] > E[U_{status\ quo}]
\]

with \(E[U_{status\ quo}] = EF_{mf1} + P_{mf1} \)

\[
E[U_{change}] = EF_{mf2} + P_{mf2}
\]

The expected utility of change does not only depend on the characteristics of the master frame itself (i.e. its payoffs and effectiveness), but also on possible transaction costs \(C \) associated with the adoption of an alternative master frame, or costs of master frame alignment (see Dahlman, 1979). These costs can include the exploration and information costs an FRP incurs in its search for a new master frame (e.g. the costs and time required to carefully analyse another FRPs’ electoral strategies), certain bargaining costs (cfr. game theory), possible administrative costs (e.g. the change of a logo, a motto or even an emphasis can result in significant propaganda cost), and policing costs, often through the legal system (e.g. the lawsuits filed against other FRPs for stealing ideas or symbols\(^2\)).

The uncertainty (or risk) that comes with the adoption of an alternative master frame should also be taken into account considering not each master frame modification or adoption categorically leads to success\(^3\). To illustrate this, it suffices to refer to the S-shaped curve of diffusion (Rogers, 2003), and the difference between innovators and spin-off FRPs (see McAdam, 1995). The earlier in the diffusion process an FRP adopts a master frame, the less evidence there will be of master frame success, and the more risk an FRP will undergo if it chooses to adopt this master frame. Besides the intrinsic master frame characteristics there are also other factors such as social distance, agent characteristics and possible heuristics in

\(^2\) A recent example is the lawsuit the FN (mostly Marine Le Pen, but also Jean-Marie Le Pen in the past) filed, and won, a lawsuit against the FNb for the use of their symbol (the tri-coloured flag). The FNb had been using the symbol since it unilaterally adopted the FN master frame in the early 1990s.

\(^3\) Up until today, there are still more FRPs that have failed to develop into structural political contributors than there are successful ones (de Lange and Mudde, 2005). This illustrates there have been more attempts to implement the FN-master frames than there are (or have been) successes.
the perception of a master frame’s success that can influence the overall uncertainty of adoption.

Along the same lines of the above expression, such uncertainty can be expressed in terms of probabilities. An FRP will adopt a new master frame with probability q, whereas the existing master frame will remain in place with probability $(1 - q)$. In other words, controlling for other independent variables, the less risk involved in the adoption process (i.e. the more information), the higher its effectiveness will be, and the more likely its adoption will be successful. This lower degree of uncertainty therefore leads to a higher expected utility of the new master frame. In formula form this in indicated by:

$$E[U_{\text{change}}] = q \ EF_{mf2} \ P_{mf2} + (1-q) \ EF_{mf1} \ P_{mf1} - C \quad 0 \leq q \leq 1 ; \ C > 0$$

Since FRPs look to achieve their goals and maximise their utility, they will only implement an alternative master frame if the expected utility of this alternative outweighs the expected utility of the currently implemented master frame. In other words:

$$qEF_{mf2}P_{mf2} + (1-q)EF_{mf1}P_{mf1} - C > EF_{mf1}P_{mf1}$$

$$EF_{mf2}P_{mf2} - EF_{mf1}P_{mf1} > \frac{C}{q}$$

$$P_{mf1}(EF_{mf2}P_{mf2} - EF_{mf1}) > \frac{C}{q}$$

The last equation indicates that master frame change occurs if C/q is smaller than a certain pre-set threshold of success. Since payoffs and effectiveness can differ within FRPs and between FRPs (see above), this threshold is also spatially and longitudinally dependent.

More specifically applied to FRPs, an already adopted master frame $mf1$ is more likely to be discarded in favour of the alternative FN master frame $mf2$ when the original master frame’s effectiveness EF_{mf1} is perceived low, when the alternative master frame’s effectiveness EF_{mf2} is perceived high, and when the attractiveness of the alternative master frame increases compared to the original master frame ($P_{mf2} > P_{mf1}$). Here, it is important to point out and emphasise the interdependence of the two parameters comprising the expected utility of a master frame: payoff and effectiveness. The increased utility of an alternative master frame does not guarantee its adoption unless the alternative is also effective in reaching its goals. It is possible a less than significant effectiveness is complemented by a relatively high payoff. However, the model shows an alternative master frame is not adopted
based solely on its payoff. Conversely, and perhaps more plausible, an alternative master frame is rather unlikely to be adopted if it is perceived as extremely effective but fairly unpopular, i.e. its payoff is less than significant. In other words, an FRP might believe an alternative master frame is more effective than the currently adopted master frame, however, it will be unlikely to go through the process of change if it faces opposition to said change (e.g. from traditional parties, factions, the media, etc.). This is mostly the case when a master frame is perceived as relatively extreme.

3. The driving force of trans-national diffusion: Two core mechanisms

The master frame change model indicates under which conditions and based on which components an FRP is likely to adopt an alternative master frame, and when it will refrain from doing so. Considering that after the design of its master frame, the FN gained multiple electoral victories, successfully emerged and managed to eventually consolidate into one of the premier FRPs in Western Europe, it is not surprising this master frame demonstrates the potential to serve as an example, or more of an ideal really, for other West European FRPs.

Even though most scholars analyse FRPs as structurally independent entities, it has become clear that such a presumption does not only limit the scope of the analysis, but also that it is highly unlikely and implausible following some of the socio-political evolutions in the past decades, such as globalisation and internationalisation (Simmons, 2003; Swank and Betz, 2003). It is important to take into account that political parties, and more specifically FRPs, are not inward looking agents and they do not necessarily limit their influence to one political system. In short, FRPs have the ability and are prone to influence other FRPs, particularly in the case of master frame diffusion. In the social movement literature such interdependence is often referred to as spill over effects (e.g. Meyer and Whittier, 1994; Oliver and Myers, 1998).

Regardless of whether the adoption process is independent or interdependent, it is based on the same criteria: payoff and effectiveness of alternative master frames, combined with the transaction costs and the uncertainty of the adoption process. The crucial difference between the two states is the influence of other agents, or how the different parameters in the master frame change model are constructed. This composition can be described by a set of mechanisms that serve as the underlying foundation of diffusion. Specifically, these mechanisms describe how exactly other FRPs can influence an adoption decision. This section carefully defines and illustrates the two most prevalent mechanisms, and the circumstances under which they operate (Braun and Gilardi, 2006; Simmons, Dobbin and
Garrett, 2006, 2007; Shipan and Volden, 2008). Both mechanisms are described theoretically, and are amenable to thorough empirical testing.

A. Learning mechanisms

Perhaps more than other mechanisms, studies of learning have been very present in the fields of economics (e.g. Elkins and Simmons, 2004), political science (e.g. Carpenter, 2004), sociology (e.g. Chan and Harrington, 2005) and organisational behaviour (e.g. Rosenkopf and Abrahamson, 1999). Learning indicates that, “when confronted with a problem, decision makers simplify the task of finding a solution by choosing an alternative that has proven successful elsewhere” (Berry and Baybeck, 2005, p.505). This mechanism places the principal focus on the innovating agent, as it presents potential adopting agents with additional evidence about possible causal relationships, which can then provide specific indications of an innovation’s utility (Volden, Ting and Carpenter, 2008; Gilardi, 2010). Together, it allows them to anticipate the effects of the diffused innovation (Simmons, Dobbin and Garrett, 2006).

In the framework of master frame diffusion between FRPs, learning can be described as the mechanism whereby FRPs use the experience of other FRPs to estimate the likely consequence of master frame change (see Gilardi, 2012). The key premise behind this mechanism is that the actions of other FRPs are more valuable and/or instructive than its own (Elkins and Simmons, 2005). An FRP determines whether an alternative master frame has been successful in a different socio-political setting, and when this has been the case, a potential adopting FRP is more likely to change its master frame (Shipan and Volden, 2008).

Learning requires a potential adopting FRP to acquire information on the possible payoffs and the effectiveness of the alternative master frame. Even though fractions of this information can certainly come by observations (i.e. from a passive capacity), the evidence of master frame success is mostly obtained from the transmitting FRP itself. Generally, a limited social distance between the transmitting and the adopting FRP can facilitate such an active interaction, however, in the end, the willingness and strength of the transmitting FRP determine whether it chooses to actively engage in the diffusion process or not. Typically, a

—

Overall, it is possible to differentiate two additional diffusion mechanisms: coercion and competition. They have been excluded from the analysis for two particular reasons. First, for pragmatic reasons, it was not possible to include these two additional mechanisms and keep the length of this paper within acceptable boundaries. Second, both coercion and competition are not applicable to the specific case of master frame diffusion between FRPs for the simple reason that FRPs mostly operate in different political systems. This indicates that one FRP cannot coerce another to adopt a particular FRP. Also, this indicates that FRPs do not compete with other FRPs for the benefits of a master frame, since each FRP experiences the benefits of the master frame within its own political system.
transmitting FRP becomes more active when the dynamic with possible adopters becomes more interdependent or even personal, and has a more direct disposition. This is often the case once FRPs have already emerged and had the time to develop more structural ties with other FRPs. In short, given the intricate nature of the master frame and its alignment process, combined with the increasing complexity of politics, elections and socio-political contexts, it would be highly unlikely that learning mechanisms could or would occur without the active participation of the transmitter (see also emulation).

Rational versus bounded learning

Further specifying learning, most of the literature differentiates between rational and bounded learning (e.g. Meseguer, 2005, 2006; Weyland, 2007; Simmons, Dobbins and Garrett, 2008). Both forms of learning emphasise the decision-making dynamic and the costs of the acquisition of information in this process. The difference between the two forms mainly lies in how and by which means decisions are taken and information is acquired. Rational learning is expressed in Bayesian terms, whereas bounded learning relies on cognitive heuristics in the decision making process.

Very common in the economic literature (e.g. Roth and Erev, 1995; Meseguer, 2009), rational learning is based on the process of Bayesian knowledge. Generally, this refers to a dynamic process in which individuals add new experiences to prior knowledge and revise their behaviour accordingly. The combination of prior knowledge and additional experiences generates posterior beliefs. The more consistent experiences are and the stronger previous beliefs are, the more likely agents will converge on the eventual interpretation of the information. As a whole, this process is considered rational because it assumes agents make optimal use of their observations and experiences (Simmons, Dobbin and Garrett, 2006).

This rational process, however, does not necessarily indicate convergence around the ‘true information’ (since the information can come from both own past experiences and present interaction and observation); it only contributes to agents’ probability assessment dynamics (Simmons, Dobbin and Garrett, 2007). Therefore it is important to keep the

5 For a more extensive statistical analysis of the probability distributions of anterior and posterior knowledge, I refer to Meseguer (2006).
6 No mechanism can guarantee an agent will actually properly interpret its observations and experiences, and eventually converge on the correct information. Concretely, a potential adopter can analyse the experiences of a transmitting FRP and misinterpret its implications. How adopters interpret the experiences surrounding the master frame can also depend on factors like the source of the information and how the information is processed (before and after obtaining it). For example, when a potential adopting FRP observes the behaviour of another FRP and how the latter’s master frame functions in its political system, it is important to take into consideration political opportunities like media exposure, the electoral system, campaign financing rules, etc. (e.g. Kriesi e.a.,
following observation in mind: “(...) although, of course, correlation does not imply causation, this is not really problematic for the study of learning in the context of diffusion. What matters is the perception of a causal link (...)” (Gilardi, 2012). Concretely, rational learning indicates an FRP continues to revise and add to its knowledge and experiences of an alternative master frame so as to obtain ‘full information’, which then weights its willingness to adopt. If one is to assume all FRPs operate according to Bayesian logic (which indicates they use anterior experiences to update their posterior behaviour), an FRP’s eventual interpretation will shift towards the general comprehension of the alternative master frame by other FRPs.

Even though few scholars reject the notion of learning, some do argue against the above description, indicating that, at present, certain observations or sources of information can be more or less important than others. It is quite possible that a state of full information is too expensive, not utility maximising, too time consuming or suffers from reducing marginal returns. It is also possible agents suffer from sampling problems or simply do not have the necessary capacity to interpret and process full information (March and Simon, 1993). The reasons why it is not possible or advisable to acquire full information is not particularly important in this context, only the need for an alternative is.

Bounded learning refers to the use of cognitive heuristics (see Kahneman, Slovic and Tversky, 1982) and social networks (see Gray, 1973) to obtain and interpret information on the payoffs and effectiveness of a diffused innovation (Tversky and Kahneman, 1982, p.32). Rather than analyse all the information, bounded learning obtains its information from other agents who have (often successfully) implemented the diffused innovation. Weyland (2007) further specifies bounded learning is more likely to occur when the technical capabilities of the agents are less sophisticated (and hence, might require interpretation).

Rather than retrieve all the available information on an alternative master frame, FRPs who look to adopt that master frame will gather information based on cognitive shortcuts and communication networks. Within such FRP networks, the intensity of contact often indicates the importance given to a particular agent and the “least likely cases” of success are given higher value by potential adopters. Based on the eventual information available to them, FRPs then decide whether to adopt that master frame (Simmons, Dobbin and Garrett, 2007).

1995; van der Heijden, 2010) and the channels through which the master frame travels. Those factors can place similar master frames in completely different daylight.

7 Remember, this research project, and particularly this paper, perceives FRPs as utility maximising entities. Therefore, if full information does not represent such a state, it is quite possible FRPs will follow an alternative information-gathering path.
Using such cognitive shortcuts is not without risk. In the case of FRPs, two possible limitations of this approach necessitate a closer look: the availability and representativeness of the information (McDermott, 2001).

In a context of master frame diffusion between FRPs, availability refers to the unequal consideration and interpretation of information. More specifically, within an FRP network, or a component thereof, it is quite possible that in the interpretation of information, knowledge or experiences of a particular FRP outweigh those of another, possibly as a difference in standing, social distance, electoral successes, leadership status, etc. Additionally, for each FRP the available information can be different, as can be the interpretation itself (Gilardi, 2010). This directly leads to a second potential bias, representativeness, which refers to a form of inference bias. FRPs acquire knowledge and add to their experience based on a limited empirical foundation. This often results in limited or wrongful external validity, which in its turn (unnecessarily) increases the uncertainty of their conclusions.

Empirically, learning is fairly straightforward to observe. In an interdependent political realm, it requires the observation of an FRP’s successful master frame, followed by similar master frame adoptions made by other FRPs. Measureable and favourable information (in units of utility) obtained by an FRP looking to adopt an alternative master frame will increase the likelihood of master frame adoption. For example, favourable electoral outcomes, increasing political power, increasing media presence, etc. could all serve as indicators of master frame success. An adopting FRP can receive such information through Bayesian knowledge dynamics (i.e. full information, rational knowledge) or it can be mediated through specific heuristics.

As a mechanism, learning is rather complex, but important. The above description specifies the differences between Bayesian and bounded learning, yet they both describe how the experience of other FRPs provides the necessary information to evaluate whether an alternative master frame is successful. In other words, an FRP’s observations and experiences allow it to update the information and knowledge it possesses regarding the (posterior) effectiveness of a particular master frame. Naturally, this evaluation is more accurate and complete in the case of Bayesian learning, as opposed to bounded learning. Going back to the master frame change model, the additional information FRPs gather about the (alternative) master frame has a direct effect on the effectiveness of a master frame. The more accurate the information is, the more efficiently an FRP can ascertain the potential utility (and success) of a master frame. Simultaneously, neither of the learning approaches have any direct influence
on the possible payoffs of an alternative master frame. Nonetheless, since both these components are interdependent, learning might have some, rather limited, indirect influence on a master frame’s payoffs.

To conclude, it is important to indicate that learning does not necessarily influence each FRP in the same manner or to the same extent. In the literature this is often referred to as the conditional nature of learning mechanisms (e.g. Shipan and Volden, 2008; Gilardi, 2010). FRPs with ideologically extreme master frames will more easily change their master frame, regardless of the alternative master frame’s potential success (i.e. its effectiveness). Therefore, the experience of others does not necessarily influence all FRPs equally. A possible reason could be FRPs’ prior difference in knowledge. More importantly, another reason could be the ideological extremity of the current master frame, which can skew the perception of an alternative master frame’s effectiveness. Together, these two factors have the ability to limit the effects of new experiences and observations, and thereby bias posterior knowledge and master frame effectiveness.

B. Emulation mechanisms

Learning mechanisms describe the process of how an FRP adopts an alternative master frame when that master frame has proven to be favourable. It also argued such a mechanism is more likely to describe diffusion patterns once an FRP has emerged (to a certain extent). Yet, diffusion does not always operate under these conditions. More so, several diffusion studies find likely effects of innovation change that cannot be explained by the previous diffusion mechanism/s. In some instances patterns of diffusion develop, despite the lack of FRP development, or the proven success of an alternative master frame. Often, this refers to a fourth and final important diffusion mechanism, emulation. Whereas learning has been most prominent in international relations, emulation is most often discussed in comparative politics (e.g. Simmons, Dobbin and Garrett, 2008). Within this mechanism, some scholars refer to the adopter’s process as imitation and the transmitter’s process as socialisation (Graham, Shipan and Volden, 2013).

In its most general form, emulation is simply the imitation of the actions of self-identified peers, regardless of whether this is beneficial or not, so as to increase mutual

8 Learning has an impact on both payoff and effectiveness because the algebraic model used in this paper assumes these two parameters interact. Meseguer (2003, p.14) even argues that effectiveness is the only parameter that can be influenced by the learning mechanism for the simple reason that she does not warrant “payoff” as a separate term in the algebraic model and includes it in the error term. But, since the function is additive, the effects of the error term (which includes the payoff effects) adds to those of effectiveness. This, however, does not give sufficient weight and importance to the theoretical effects of payoffs.
similarities. Opposite to learning, where agents emphasise the innovation and the adoption of the master frame (i.e. the action), emulation focuses on the other agent (often an innovator) and how they can look alike (Shipan and Volden, 2008). For this reason, some scholars also refer to emulation as norm diffusion (e.g. Finnemore and Sikkink, 1998; Kelley, 2008). Therefore, an important difference with learning is the agents’ involvement. Whereas learning described a relatively interdependence between them, emulation does not require the active participation of the transmitting agent and is able to occur in the absence of an active transmitting agent, most notably by a go-between or intermediate.

Emulation if often embedded in social constructivism, which describes agents as being restricted by bounded rationality because they lack the knowledge and cognition to rationally examine the costs and benefits of alternative innovations (e.g. March and Simon, 1993, Strang and Meyer, 1993; Simmons, Dobbin and Garrett, 2007). In other words, emulation can be described as “the social construction of appropriate behavior, where actors model their behavior on the examples provided by others” (Lee and Strang, 2006, p.889). Within this approach, Simmons, Dobbin and Garrett (2007) indicate this can happen through three different paths: (i) leading agents serve as examples or ideal, (ii) experts provide theorisation about the effects of adoption and a rationale for adoption, or (iii) experts emphasise an innovation’s appropriateness, referring to it as normatively just. The role of these different agents, and the channels through which they operate is discussed more specifically in the following paper.

Within such a social constructivists framework, a master frame diffuses between FRPs because of its socially constructed properties (i.e. its normative qualities), rather than its objective characteristics (i.e. its potential success) (Tolbert and Zucker, 1983; Checkel, 2005). An FRP expects to instantly influence the outcome of the adoption process (e.g. increasing vote share), without properly taking into consideration the effectiveness of the adoption (i.e. its chances for success). More often than not, due to the emphasis on immediate results, this mechanism often takes place without proper master frame alignment and in the absence of social proximity, thereby making successful master frame adoption increasingly difficult (Snow, et al., 1986; Benford and Snow, 2000). In terms of distance between diffusing FRPs, the proximity between learning FRPs is of a social nature, whereas this is not a requirement for emulating FRPs. Here, a more “psychological” proximity would suffice (e.g. Rose, 1993).

9 In other words, learning refers to as a focus on the practice, whereas emulation focuses on the outcome (Strang and Soule, 1998).
The socially constructed nature of alternative master frames allows adopting agents to value each alternative master frame differently. This interpretation is not only based on the social environment and its normative values, but also on the conformity and the compliance of the master frames to these socially constructed externalities. Therefore, emulation has a direct influence on the relative size of the payoffs of both the adopted and the alternative master frame, but not necessarily on their weighted success, i.e. their effectiveness. Gilardi (2010) argues emulation primarily has an effect on the ideological component of payoffs, whereas the effects on the electoral component are rather limited. However, any such inference remains unsubstantiated and hence ambiguous. This is fairly different from learning, which primarily influences an FRP’s knowledge of the potential success (i.e. the effects) of alternative master frames.

Given that an alternative master frame has a different meaning for each agent, emulation is systematically studied through the lens of social constructivism (see also Weber, 1978). This particular focus on the intersubjectivity of a master frame’s meaning, combined with the changing propensity of the comprising ideology and rhetoric, indicates that the same master frame can have different meanings and interpretations through time and space. Hence, much like learning, emulation does not necessarily have the same effect on each FRP, which stipulates its conditional nature. Following Shipan and Volden’s (2008) claims regarding the conditionality of diffusion mechanisms, one could argue that larger or more important FRPs (specified in terms of political and/or electoral power), are less likely to engage in emulation.

Empirically, there are three potential problems one has to consider when describing diffusion models and their mechanisms at work (Meseguer and Gilardi, 2009). Their implications are of a normative nature, however, it is important to at least mention them. First, existing literature extensively discusses diffusion mechanisms, however, the role of politics in this process and the effect this might have on diffusion models has not been systematic analysed. Therefore scholars largely neglect the influence domestic politics has on the adoption process of an alternative innovation. In this particular case, depending on the political system, a master frame might not diffuse, even if it has proven to be successful. Therefore it is important to also emphasise the importance of political opportunities and mobilising structures into account. Second, empirical studies often fail to take into account the heterogeneous situations an FRP operates in, both within its party and its party family. Therefore it is important to accurately portray the complex nature and the possible causality of the processes under study. Third, it is important not only to look at diffusion as an
explosive event, but also as a gradual phenomenon10. Otherwise, this can lead to severe selection bias. Therefore, this research project chose to study the variation of the process through time and space, rather than focus on a limited number of occurrences of (successful) diffusion patterns.

C. Combining mechanisms of diffusion: Overlapping efforts

Most scholars accept that different mechanisms can describe the same diffusion process at a different point in time, thereby indicating that diffusion patterns (can) comprise multiple mechanisms of diffusion (Leichter, 1983; Berry and Baybeck, 2005; Simmons, Dobbin and Garrett, 2006; Boehmke and Witmer, 2004; Shipan and Volden, 2008). A complication to this recognition is the possible affinity between those mechanisms, which would indicate mechanisms of diffusion are complements, rather than substitutes (Graham, Shipan and Volden, 2013). The profound implications of this deduction do not fall within the scope of this research project, however, with an eye on trans-national diffusion patterns between FRPs, it is important to make the following observation.

Empirically, it is often difficult to differentiate emulation from learning (Meseguer, 2005). Too often, diffusion is equated to learning, without a proper analysis of the effectiveness of an innovation before adopting agents implemented it (Lee and Strang, 2006). Bounded learning often overlaps with emulation because, much like emulation, bounded learning is attracted to the experiences of more prestigious FRPs, albeit for different reasons. On one hand, bounded learners are particularly interested in prestigious FRPs because of their utilitarian functionality as a cognitive heuristic, i.e. their paramount informative value. On the other hand, emulating FRPs are interested in the more prestigious FRPs because of their symbolic value, rather than their substantial significance (Finnemore, 1996; Strang and Chang, 1993). An important difference between these two lies in the effort toward master frame alignment, or in other terms, the attempt to transform psychological proximity into social proximity. Since intuitively, emulation appears more prevalent in earlier stages, and learning in the latter stages of FRP development, one could claim these two mechanisms operate linearly throughout an FRP’s development. However, since they are not necessarily mutually exclusive, a non-linear, more random relationship appears more correct.

10 Most scholars see diffusion as, and only as, an explosive event. They see diffusion as a binary phenomenon: either something is diffused or it is not. However, a more accurate question would be “to what extent has something diffused” or “what are the probabilities of adoption”, thereby going from a binary projection to a probability. This criticism is reinforced by the fact that most empirical diffusion models use ‘event history analysis’ or ‘generalised methods of moments’, both probit models, whereas perhaps they should use a multinomial logit/probit.
To conclude, diffusion can occur through different mechanisms, each affecting the patterns of diffusion in a distinctive way. Given the relative insignificance of coercion and competition mechanisms in this particular case (mostly due to the trans-national dimension of this research project), the importance of and distinction between learning and emulation in the trans-national master frame diffusion between FRPs should not be underestimated. On one hand, learning refers to the contribution of additional information, provided by other FRPs in the form of observations and experiences. This mechanism has the potential to revise the effectiveness of alternative master frames (either through rational or bounded processes). On the other hand, emulation refers to blind adjustment of the master frame to social conformity, which can alter the relative payoffs of the alternative master frame. All in all, the intrinsic difference between the two mechanisms depends on whether FRPs are motivated by the changing outcomes or changing evaluations of alternative master frames (Elkins and Simmons, 2004). Hence, diffusion can be very distinct, depending on which diffusion mechanism(s) is/are in play.

4. Aggregating diffusion mechanisms: A threshold model

In the previous sections, this paper described how FRPs choose master frames and how diffusion mechanisms can influence this process of master frame change. Based on the original S-shaped curve of adoption (Rogers, 2003), this section proposes a threshold model to serve as the foundation of an aggregated model (Granovetter, 1978, Levi-Faur, 2002). Together, these can provide a comprehensive analysis of the question of FRP interdependence and how such independence can result in different patterns of diffusion.

A threshold model indicates FRPs are sensitive to the proportion of other FRPs that have already made an adoption decision regarding an alternative master frame. This proportion is often referred to as the threshold or the critical mass (see Schelling, 2006; Granovetter, 1978)\(^\text{11}\). As a result of FRPs’ heterogeneous nature and the trans-national differences in FRPs’ political opportunities (Arzheimer, 2009), this so-called ‘tipping point’ can be (and most likely is) different for each FRP. Then, since each FRP is likely to have a different threshold for master frame adoption, the specification of a threshold model explicitly illustrates that FRPs’ adoption decisions (and the resulting master frame diffusion) are mutually dependent and non-linear (Granovetter, 1978). An FRP’s adoption decision depends on its own distinguishing attributes, as portrayed by its preferences (i.e. the threshold), and

\(^{11}\) A colloquial example of such a “safety in numbers” model, and the resulting value of others’ information, is the Milgram experiment on obedience (Milgram, 2009).
other FRPs, as portrayed by others’ preferences (i.e. the proportion of adopters composing the threshold).\(^{12}\)

An aggregate model: Combining change and threshold models

Aggregating the previous models into one provides specific explanatory benefits to the analysis of trans-national diffusion patterns between FRPs. First and foremost, besides providing an explicit indication that FRPs’ adoption decisions are far from independent, combining the individual master frame change model with the aggregate threshold model adds an additional and previously absent dimension to the analysis of patterns of master frame diffusion between FRPs. It systematically connects conceptual levels of observation in a way a multi-level model would connect different analytical levels.

In addition to a unique aggregate perspective, this combination also provides a refined set of parameters for electoral payoffs, ideological payoffs, effectiveness, transaction costs and uncertainty. The aggregated model explicitly demonstrates that the experiences and behaviour of other FRPs have substance in the analysis because they help shape a potential adopter’s perception of the effectiveness and/or payoffs of alternative master frames. On a broader level, this indicates it is not necessarily the absolute number of adopting FRPs that shape the outcome of the diffusion process, rather the effects and implication of that proportion of FRPs (Schelling, 2006).

Most importantly, an aggregate model allows for a differentiation between FRPs based on their place on the S-shaped curve of master frame adoption. Innovators are original and novel in the design of the master frame. With few exceptions, innovators do not require adoption by other FRPs since they create and fashion such an alternative master frame. In the case of FRPs, the FN is the primary example of such an innovator, particularly for West European FRPs. Based on a strategic combination of external resources (e.g. the MSI) and internal intellectuals (e.g. Bernard Anthony), they replaced an old stigmatised and unappealing master frame with a modernised master frame with significant electoral appeal. Early adopters are those FRPs who deliberately adopt (or adopted) the alternative master frame immediately after its original design and implementation or only few other FRPs have done so. On the S-shaped curve, those are the FRPs with a threshold below the inflection point (or, relatively low compared to the majority of FRPs). For them, the master frame’s

\(^{12}\) Directly following this, it should be noted a threshold model does not consider why an agent has the preferences it has, or how these preferences came about (Granovetter, 1978, p.1421). This is irrelevant for the actual adoption process.
payoffs and the effectiveness change essentially independent from other FRPs’ preferences or thresholds. Typically, early adopters suffer from relatively high transaction costs and high uncertainty due to the innovative nature of the alternative master frame. These adoption ‘costs’ usually positively correlate with each other, and can therefore reinforce one another. Late adopters also seek to adopt an alternative master frame, but they are usually more sceptical about the process. Their relatively high threshold (compared to early adopters) indicates they require a more significant pay-off and effectiveness of the alternative master frame before they will consider adoption. Simultaneously, they will only do so when the costs of adoption are relatively low.

Similar to earlier observation, this distinction between adoption times illustrates once again that other FRPs influence the general adoption dynamic and the FRPs’ individual adoption behaviour. However, this conditional process is not necessarily as straightforward as indicated by the aggregate model. Each FRP has different characteristics and decision-making procedures. Additionally, the influence other FRPs have can alter between FRPs and should, hence, be considered unique (e.g. threshold). Specifically, each FRP requires a different combination of conditions to be realised before it will (consider) to adopt an alternative master frame. These conditions have been described by the earlier master frame change model and refer to payoffs, effectiveness and adoption costs.

Spatial and longitudinal variation on an aggregate level

Since different diffusion mechanisms influence different components of the master frame change model, their relevance and impact can vary between different FRPs. Therefore, it is quite possible a particular mechanism is more relevant for a certain FRP than it is for another. For example, the VB has adopted the alternative master frame and continued to develop mostly based on a systematic learning dynamic. Their close interaction with the FN and the observations and experiences they obtained through this interaction has significantly increased the relative effectiveness of the alternative master frame. At the same time, the VB has been one of the earliest adopters of the FN’s master frame; hence their threshold has been relatively low. During that same time, the FNb also sought to adopt the FN’s master frame, however, the FN remained mostly passive in the process, which indicates emulation might be a better mechanism to describe the diffusion patterns between them. Even though the FNb also had a relatively low threshold for adoption, the adoption process was more opportunistic and in search of social acceptance. This mostly influenced the relatively payoffs of master frame adoption, particularly the ideological component of it.
Each FRP has a place on the S-shaped adoption curve (of master frame diffusion) and an aggregate diffusion model describing its patterns of diffusion. In addition to possible spatial variation, diffusion mechanisms can also have longitudinal variation. Since an active transmitter is not necessary, it is possible emulation mechanisms occur in the absence of any sort of systemic connection, interaction or communication between transmitter and adopter/s. After all, imitating behaviour does not even require knowledge of the original model. Most often, the absence of such structural networks indicates FRPs, and particularly the adopter/s, are in earlier stages of their development. Therefore, it is more likely for mechanisms of emulation to occur during an adopting FRP’s emergence (or even before that). Once an FRP emerges, it typically has more opportunities and is more likely to interact (more directly) with other FRPs, to develop more interdependent communication networks, and to form more structural systems between them. This allows FRP to systematically acquire additional information on the effects and implications of a master frame (and its components), which in its turn allows for the bounded or Bayesian updating of the relative effectiveness of a master frame. Therefore, learning mechanisms are more likely to be prevalent in later stages of FRP development (e.g. consolidation). In short, depending on an FRP’s developmental state, certain diffusion mechanisms are more likely than others to contribute to the aggregate patterns of diffusion.

5. Concluding remarks

Most of the existing FRP literature either ignores the analytical challenges of FRP interdependence, or it assumes structural independence between FRPs. They then provide generalisations about FRP development without considering one of the core dynamics in any political analysis, i.e. interdependence between units. By modelling interdependence, this paper specifies and complements some of the existing literature, rather than suggest a crucial change. Specifically, it illustrates how FRPs are not independent in their development and how the (alternative) master frame designed by the FN plays a crucial role in this development.

The aggregated model described in this paper is a first step towards a more systematic and integrated account of FRP interdependence. More specifically, this aggregated model indicates FRPs will only adopt an alternative master frame based on the underlying logic of a threshold model, which indicates that other FRPs can influence both the adoption decision (master frame change) and the adoption process (master frame diffusion mechanisms), both illustrated by changes to the relative effectiveness and payoffs associated with an alternative
master frame. Furthermore, these diffusion mechanisms, and the effects they have on master frame change, have a dynamic character, indicating they can change both between FRPs and through time.

This inherent variation of the effects of diffusion mechanisms, the complexity and dense nature of the experiences that constitute master frame change, the ever-evolving nature of master frames, the difficulty to acquire observations on some of the internal, and more exclusive, characteristics of FRPs, and the traditional limitations in time, funding and linguistic knowledge, all contribute to the provisional absence of a more systematic empirical analysis of diffusion mechanisms. Similarly, it is not yet possible to draw conclusions on a possible equilibrium at the aggregate level or to identify the circumstances under which diffusion dynamics and its mechanisms lead to a common output (i.e. convergence of master frame adoption). In the future, continuing data collection will allow for the necessary inclusion of process and interdependence, and must be considered a priority.

Upon the distinction between four diffusion mechanisms, this paper particularly focuses on the analysis of emulation and learning, and their implications for the aggregate diffusion patterns between FRPs. Two core characteristics allow this paper to make the crucial distinction between emulation and learning. First, emulation does not require an active transmitter (it is even more likely the transmitter is passive), whereas learning does. Second, emulation mostly influences master frame change through an alternative master frame’s relative payoffs, whereas learning primarily influences a master frame’s relative effectiveness through bounded or Bayesian knowledge dynamics. Combining these, the primary conclusion of this paper argues that emulation is more likely in the earlier stages of the adopting FRP’s development, while learning is the principal mechanism at play in the later stages of FRP development. Since learning includes an accumulation of knowledge, it also indicates that learning has a more structural effect than emulation, and is potentially more beneficial for an adopting FRP over time (see Gilardi, Füglister and Luyet, 2008).

To conclude, within the FRP literature, diffusion has been severely underemphasised and understudied, and this paper particularly seeks to contribute to the existing explanations of FRP development. This paper identifies the underlying mechanisms of diffusion, how they contribute to patterns of diffusion and what role they play in the overall development of FRPs. Future research should continue to analyse and examine diffusion and its characteristics as an important explanatory process of FRP development.
Bibliography

