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Persons with spinal cord injury (SCI) exhibit deficits in volitional motorAbstract
control and sensation that limit not only the performance of daily tasks but also the
overall activity level of these persons. This population has been characterised as
extremely sedentary with an increased incidence of secondary complications
including diabetes mellitus, hypertension and atherogenic lipid profiles. As the
daily lifestyle of the average person with SCI is without adequate stress for
conditioning purposes, structured exercise activities must be added to the regular
schedule if the individual is to reduce the likelihood of secondary complications
and/or to enhance their physical capacity. The acute exercise responses and the
capacity for exercise conditioning are directly related to the level and complete-
ness of the spinal lesion. Appropriate exercise testing and training of persons with
SCI should be based on the individual’s exercise capacity as determined by
accurate assessment of the spinal lesion. The standard means of classification of
SCI is by application of the International Standards for Classification of Spinal
Cord Injury, written by the Neurological Standards Committee of the American
Spinal Injury Association. Individuals with complete spinal injuries at or above
the fourth thoracic level generally exhibit dramatically diminished cardiac accel-
eration with maximal heart rates less than 130 beats/min. The work capacity of
these persons will be limited by reductions in cardiac output and circulation to the
exercising musculature.

Persons with complete spinal lesions below the T10 level will generally display
injuries to the lower motor neurons within the lower extremities and, therefore,
will not retain the capacity for neuromuscular activation by means of electrical
stimulation. Persons with paraplegia also exhibit reduced exercise capacity and
increased heart rate responses (compared with the non-disabled), which have been
associated with circulatory limitations within the paralysed tissues. The recom-
mendations for endurance and strength training in persons with SCI do not vary
dramatically from the advice offered to the general population. Systems of
functional electrical stimulation activate muscular contractions within the
paralysed muscles of some persons with SCI. Coordinated patterns of stimulation
allows purposeful exercise movements including recumbent cycling, rowing and
upright ambulation. Exercise activity in persons with SCI is not without risks,
with increased risks related to systemic dysfunction following the spinal injury.
These individuals may exhibit an autonomic dysreflexia, significantly reduced
bone density below the spinal lesion, joint contractures and/or thermal dysregula-
tion. Persons with SCI can benefit greatly by participation in exercise activities,
but those benefits can be enhanced and the relative risks may be reduced with
accurate classification of the spinal injury.

The human spinal cord is a complex association or disease of spinal tracts results in varying types
and degrees of dysfunction depending upon the spe-of upper and lower motor neurons that functions as a
cific neural structures affected.bidirectional conduit between the brain and its mo-

tor, sensory and autonomic targets. It also serves as a The interruption of spinal cord functions by trau-
site for reflex integration between body sensors and ma affects 10 000 Americans annually, with an esti-
their motor and autonomic effectors. Because spinal mated 179 000 persons having survived their initial
cord functions differ by level and structure, injury to injury.[1-4] Thereafter, these individuals experience
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unique physical, social and psychological changes cise conditioning, contemporary methods of injury
classification, exercise options and established ben-throughout their lives, including diminished ability
efits of training, and risks imposed by inappropriateto perform and benefit from exercise condition-
exercise recommendations for those with SCI.ing.[5,6] The latter limitation is cause for concern as:

(i) individuals with spinal cord injury (SCI) are
usually young and physically active at the time of 1. Neurological Classification of Persons
injury;[3] (ii) profound physical deconditioning is with Spinal Cord Injury (SCI)
common after injury;[7-9] and (iii) physical decondi-

If trauma to, or disease of, the spinal cord alwaystioning contributes to multisystem medical compli-
resulted in its anatomical or physiological transec-cations,[10-19] activity limitations[7,20,21] and acceler-
tion, classification of spinal cord dysfunctions fol-ated aging.[6,7,22-26]

lowing SCI would be relatively easy. However, the
Many reviews and chapters published over the

spinal cord is rarely severed unless penetrated by a
past decades have addressed the need for persons

bullet or severed by its bony covering during very
with SCI to adopt habitual exercise as part of a

high velocity impact. More often the cord remains
healthy lifestyle.[5,6,9,17,18,27-33] Exercise options con-

anatomically intact but suffers contusion, infarction
tained in these reports have focused on use of mus-

or mechanical deformation that interrupts its local or
cle activities still under voluntary nervous system

relay circuitry. It also can undergo secondary dam-
control, as well as sequenced contractions of mus-

age from inflammatory autodestruction, which ex-
cles stimulated by electrical current. Outcomes of

plains the routine administration of high-dose corti-
studies cited in these monographs provide credible costeroids within hours of an SCI.[37] Notwithstand-
evidence that exercise performed by persons with ing the cause of spinal damage, more than half of the
SCI enhances physical conditioning and reduces survivors will experience varying degrees of motor,
multisystem disease susceptibility. They further sensory or autonomic sparing at different spinal cord
suggest that habitual exercise might reduce fatigue, levels,[2,38,39] making classification of persons with
pain, weakness, joint deterioration and incipient SCI a challenging, yet important, science.[4]

neurological deficits that appear as persons age with To assist with accurate and consistent classifica-
disability. As these deficits challenge the ability of tion, uniform standards have been developed that
those with SCI to perform essential daily activities allow persons with SCI to be systematically ex-
first mastered after injury, their prevention will like- amined and classified, and to document changes in
ly foster fullest health and life satisfaction for those sensorimotor function that accompany the passage
aging with a disability. of time, clinical treatments or research interven-

Use of exercise as a healthy activity and lifestyle tions. The benchmark system used to classify per-
elective for those with SCI might appear fairly sons with SCI is the International Standards for
straightforward. To the contrary, exercise options Classification of Spinal Cord Injury (revised 2000),
available to those with SCI are more limited than which is written by the Neurological Standards
those without disability,[33] their acute exercise and Committee of the American Spinal Injury Associa-
training responses less robust than those of persons tion (ASIA), and endorsed as the recommended
without SCI,[28,34,35] and the risks of impudent activi- international standards by the International Spinal
ty greater and longer lasting.[33,36] This makes an Cord Society (ISCoS; formerly the International
understanding of neurological classification, exer- Medical Society for Paraplegia, and hereinafter the
cise opportunities and risks of activity important if ‘ASIA Guidelines’) [figure 1].[40] While a complete
those with SCI are to benefit and not be harmed description of spinal column and spinal cord anato-
from exercise conditioning. This paper will review my is beyond the scope of this review, the accurate
common medical problems experienced by persons description of an injury to a given spinal cord seg-
with SCI that lend themselves to benefit from exer- ment involves designation of a spinal column region
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Fig. 1. American Spinal Injury Association (ASIA) classification of spinal cord injury (reproduced from the American Spinal Injury Associa-
tion,[41] with permission).

(e.g. cervical, thoracic, lumber or sacral), a spinal trauma or disease. The long tracts of the spinal cord
nerve within that region, and the degree to which the are upper motor neurons. By convention, the lower
injury is neurologically complete or incomplete. motor neuron system begins in the anterior horn of
Should the injury result in a specific spinal cord the grey matter and exits the intervertebral foramen
syndrome this should also be designated. to join the returning sensory axons as a mixed nerve.

The motor portion of this mixed nerve then travels to
its target muscle(s). The returning sensory nerve1.1 Upper and Lower Motor Neuron Lesions
fibres travel in this mixed nerve but, upon entry to
the foramen, form a dorsal root that penetrates theIt is clinically important for those working with
cord in the dorsal root entry zone and synapses withsubjects having SCI to differentiate between upper
the anterior horn cells of the anterior grey matter.and lower motor neuron injuries. The spinal cord is
This completes the motor-sensory reflex arc. Le-organised in such a way that either upper or lower

motor neuron function, or both, can be disrupted by sions of upper motor neurons result in ‘decentralisa-
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tion’ of the nervous system, spastic paralysis and the level of injury, the trunk, legs and pelvic organs
exaggerated sensorimotor reflexes below the injury. may be involved. The term is used when referring to
This means that motor, sensory and autonomic re- cauda equina and conus medullaris injuries, but not
flex activities are preserved, but no longer under to lumbosacral plexus lesions or injury to peripheral
command of the brain. The contrasting injury is a nerves outside the neural canal.”[42,43]

lower motor neuron lesion, which often accompa-
1.3 Neurological, Sensory and Motor Levelsnies SCI at the T10 level or lower and almost always

occurs at, or caudal to, T12. Persons with these
Neurological level refers to the most caudal seg-

lesions lose central nervous system control of sen-
ment of the spinal cord with normal sensory and

sorimotor functions, as well as sensorimotor reflex
motor function on both sides of the body. Because

activity, which causes flaccid paralysis and areflexia
the results of sensorimotor testing often differ by

(‘denervation’). This explains the greater loss of
side, up to four different segments may be identified

lower extremity muscle mass in individuals with
in determining the neurological level, i.e. R-sensory,

flaccid rather than spastic paralysis. Otherwise, inju-
L-sensory, R-motor and L-motor. In such cases it is

ry to the cord at any site resulting in damage to the
strongly recommended that each of these segments

reflex arc can leave a denervated (areflexic) segment
be separately recorded and that a single ‘level’ not

among neighbouring segments that remain spastic.
be used, as this can be misleading. When the term

It is important to note that while spastic muscles ‘sensory level’ is used, it refers to the most caudal
are capable of contracting upon stimulation with segment of the spinal cord with normal sensory
transcutaneous electrical alternating currents, gener- function on both sides of the body; the ‘motor level’
ally, flaccid muscles are not. This provides a means is similarly defined with respect to motor function.
of discriminating upper from lower motor neuron These ‘levels’ are determined by neurological ex-
lesions and also determining subject or patient can- amination of: (i) a key sensory point within each of
didacy for use of electrical prostheses that provide 28 dermatomes on the right and 28 dermatomes on
exercise or ambulation in persons with SCI. the left side of the body;[42] and (ii) a key muscle

within each of ten myotomes on the right and ten
1.2 Defining Spinal Cord Lesions: Plegias myotomes on the left side of the body. Assessment

of sensory and motor level is key in those with
Individuals with SCI are described as having

paraplegia having injuries from T1 through T8,
lesions affecting either sensorimotor function of all

whereas motor function is the determining factor in
limbs or the upper extremities alone. The former are

classification of tetraplegia.
said to have tetraplegia (preferred to ‘quadriplegia’),
which is defined as: “A term referring to impairment 1.4 Complete and Incomplete Spinal
or loss of motor and/or sensory function in the Cord Lesions
cervical segments of the spinal cord due to damage
of neural elements within the spinal canal. Te- Confusion and imprecise language surround the
traplegia results in impairment of function in the definitions of neurological completeness and incom-
arms as well as in the trunk, legs and pelvic organs. pleteness. Historically, the Functional Classification
It does not include brachial plexus lesions or injury scale of Frankel et al.[44] was used to assign a grade
to peripheral nerves outside the neural canal.”[42,43] of SCI from A to E. These grades were assigned on
Paraplegia is defined as: “A term referring to im- the basis of sensorimotor sparing below the level of
pairment or loss of motor and/or sensory function in SCI. In contrast, the ASIA scale uses ‘sacral spar-
the thoracic, lumbar or sacral (but not cervical) ing’ as the criterion for determining neurological
segments of the spinal cord, secondary to damage of completeness.[39,42,45] This requires a test of motor
neural elements within the spinal canal. With para- function examining the presence of voluntary con-
plegia, arm functioning is spared, but, depending on traction of the external anal sphincter upon digital
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examination. The ASIA definitions of complete and planations for resolution of ‘spinal shock’ and re-
incomplete lesions are: covery of sensorimotor functions, the designation of

‘neurological completeness’ within the first year of• ‘Complete injury’: a term describing absence of
injury leaves open the possibility for erroneous clas-sensory and motor function in the lowest sacral
sification of a subject thereafter. This explains whysegment.[42]

many investigators use the first anniversary of injury
• ‘Incomplete injury’: a term describing partial

as both a benchmark for neurological stability and a
preservation of sensory and/or motor functions

criterion for enrolment of subjects with SCI in re-
below the neurological level and including the

search studies, especially when sensorimotor func-
lowest sacral segment. Sacral sensation includes

tion is under study. Clearly, however, the use of the
sensation at the anal mucocutaneous junction as

term ‘complete’ written on an initial trauma exami-
well as deep anal sensation.[42]

nation might ultimately have little bearing on wheth-
Both ASIA and Frankel methods are useful for er recovery of reflexes or sensorimotor function

describing completeness of injuries, as an individual might result. Thus, examination and classification at
with infralesional sensory sparing (i.e. incomplete the beginning of exercise testing and training is
sensory loss; Frankel Grade B) can still be neuro- needed.
logically complete when using the ASIA guidelines.
Also, the ASIA C classification is so broad as to 1.5 SCI Syndromes
sometimes limit useful classification of motor and
functional abilities of patients with SCI that may be As the various spinal columns transmit different
better understood when using Frankel grades. types of information, and because most persons

surviving SCI do not experience complete severanceAccurate descriptions of complete and incom-
of their cords, many different patterns of sparedplete lesions are often confounded by recovery of
sensorimotor function are possible. The syndromessensorimotor function within weeks or months after
that ensue are usually described when defining theinjury, which is not uncommon for some individuals
levels and completeness of injury. The major syn-initially presenting without preserved reflex or sen-
dromes, their definitions and causations are listed insorimotor functions.[46] This recovery, however, will
the following sections.more likely occur in individuals with very low ve-

locity injuries in which cord bleeding or anatomic 1.5.1 Anterior Cord Syndrome
disruption of neural elements are limited. Several An anterior cord syndrome is “a lesion that pro-
mechanisms have been postulated to explain ‘return duces variable loss of motor function and of sensi-
of function’ after SCI. The first involves a belief that tivity to pain and temperature, while preserving
a ‘spinal shock’ occurs immediately upon SCI in proprioception”.[42] An anterior cord syndrome re-
some individuals – a state of areflexia thought to sults primarily in a profound motor loss below the
result from hyperpolarisation of cord neurons ac- level of injury. Destruction of the anterior portions
companying injury-related loss of descending facili- of the white and grey matter of the spinal cord
tation.[47] Thereafter, those with incomplete lesions affects the corticospinal motor tracts and, to a lesser
often recover reflexes in a caudal to rostral se- extent, sensory tracts that mediate light touch and
quence, although the extent of reflex recovery has pressure.
questionable value in predicting eventual patterns or

1.5.2 Central Cord Syndromeextent of motor recovery.[47] Otherwise, post-synap-
tic receptor up-regulation and synaptic growth have A central cord syndrome is “a lesion occurring
been postulated as explanations for neuronal recov- almost exclusively in the cervical region, that pro-
ery following SCI,[48,49] although the precise mecha- duces sacral sensory sparing and greater weakness
nisms promoting these changes remain incompletely in the upper limbs than in the lower limbs”.[42] A
understood. Notwithstanding the controversial ex- person with a central cord syndrome often presents
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with greater motor impairment of the upper than bosacral nerve roots within the neural canal result-
lower extremities if the damage or disease is prima- ing in areflexic bladder, bowel and lower limbs”.[42]

rily limited to the central grey and white spinal cord
2. Medical and Health Consequencesmatter. Because upper extremity motor function is
of SCIprimarily activated by the medial corticospinal

tracts, sensorimotor functions of the lower extremi-
Persons with SCI face unique health challenges

ties are usually affected to a lessor degree. Central
throughout their lives, and their injuries dissociate

cord injury is common among individuals having
the normally well integrated homoeostatic responses

congenitally narrow spinal canals and in those, espe-
of body systems known to accompany physical ac-

cially aging persons, whose osteoarthritic pathology
tivity. Nervous system damage disrupts to varying

results in spinal canal stenosis.
degrees the necessary signal integration among mo-
tor, sensory and autonomic targets, and thus has a

1.5.3 Brown-Sequard Syndrome profound effect on fitness, exercise capacities and
A Brown-Sequard syndrome is “a lesion that health. Depending on the level and type of cord

produces relatively greater ipsilateral proprioceptive lesion, persons with SCI are among the most physi-
and motor loss and contralateral loss of sensitivity to cally deconditioned of all humans.[7,50] Not surpris-
pain and temperature”.[42] The Brown-Sequard syn- ingly, young persons with chronic SCI experience
drome results from an anterior-posterior hemisec- accelerated pathological states and conditions nor-
tion of the spinal cord often accompanying a pene- mally associated with physical deconditioning and
trating wound that severs the neural elements. When premature aging, including: dyslipidaemias and
the elements of only one lateral portion of the spinal heart disease;[23,24,51,52] arterial circulatory insuffi-
cord are destroyed, the injury results in an unusual ciency[53-57] and clotting disorders;[58,59] bone and
pattern of sensorimotor function with a loss of in- joint diseases;[60-62] and pain of musculoskeletal and
fralesional motor function, proprioception, fine neuropathic origins.[63-68]

touch and vibration discrimination on the same side Notwithstanding their physical limitations, many
of injury, but loss of pain, temperature, crude touch persons with SCI can still undergo exercise recondi-
and deep pressure on the opposite side of injury. The tioning. Those who retain upper extremity function
syndrome is explained by decussation of motor can participate in a wide variety of exercise activi-
tracts in the brain stem before they descend in the ties and sports,[6,69] and ambulate with the assistance
cord. In contrast, ascending sensory tracts of the of orthoses and computer-controlled electrical
anterolateral systems cross to the opposite side at (or neuroprostheses.[70-76] Individuals with upper motor
near) the level in which the dorsal roots enter the neuron lesions can pedal cycle ergometers by sur-
cord. This explains why ‘same side’ motor deficits face electrical stimulation of selected lower extremi-
are common in patients with Brown-Sequard syn- ty muscle groups under computer control.[30,31,33]

drome, but sensory preservation is greater on the Many body organs and tissues acutely respond to
contralateral side of injury. exercise despite their decentralised or denervated

states, and because many survivors of SCI experi-
1.5.4 Conus Medullaris and Cauda ence complete sensory loss or significantly dimin-
Equina Syndrome

ished nociceptive responses, electrically stimulated
A conus medullaris syndrome involves an “injury

muscle contractions can often be utilised without
of the sacral cord (conus) and lumbar nerve roots

pain.
within the spinal canal, which usually results in an
areflexic bladder, bowel and lower limbs”.[42] Sacral 2.1 Physical Deconditioning
segments may occasionally show preserved reflexes
(e.g. bulbocavernosus and micturition reflexes). A Persons with SCI usually live sedentary
cauda equina syndrome involves “injury to the lum- lives,[7,9,68,77] which explains their poor physical fit-
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ness and heightened risk of cardiovascular morbidi- a number of ‘noxious’ stimuli unrelated to muscle
ty and mortality.[9,22,51,78] Nearly one in four healthy stretch, including urinary voiding, venous thrombo-
young persons with paraplegia fails to achieve levels sis, thermal dysregulation, occult fracture or infec-
of oxygen consumption (V̇O2) on an arm exercise tion.[96] In contrast, damage to lower motor neurons
test sufficient to perform many essential activities of involving injury below T10 usually results in flaccid
daily living.[8] While those with paraplegia have far paralysis and loss of neuromuscular response to
greater capacities for activity and more extensive administration of alternating electrical currents.
choices for exercise participation than persons with Rapid bone demineralisation is expected during
tetraplegia, they are only marginally more fit.[7,11] the first year after SCI, after which bone density

levels continue to slowly decay. Increased urinary
2.2 Musculoskeletal Decline excretion of calcium and hydroxyproline,[97]and pro-

gressive rarefying of bone on radiographs are evi-
Altered structural and contractile properties of dent throughout this period. About one-third to one-

muscle after SCI limit the ability of totally paralysed half of bone mineral density is lost by 1 year after
and weakened muscle to sustained intense contrac- injury, with primary losses occurring in the
tions for extended durations. Most studies of suble- supracondylar femur. The inevitable course of SCI
sional muscle after SCI in humans report fibres that: leads to underhydroxylated and hypocalcific
• are smaller than those above the lesion and those bone[98,99] with permanently heightened susceptibili-

of persons without SCI;[79-83]
ty to fracture, even following trivial or impercepti-

• have less contractile protein;[84]
ble trauma.[100] Joints experience similar deteriora-

• produce lower peak contractile forces;[85,86]
tion[60] and heightened injury susceptibility brought

• transform toward fast phenotypic protein expres- on by cartilage atrophy[101] and joint space deformi-
sion;[81,87-90]

ties.[102-104]

• increase myosin heavy chain isoforms;[90,91]

• decrease their resistance to fatigue.[19,79,84,92,93]
2.3 Cardiovascular Disease, Dyslipidaemia

Muscle fibre cross-sectional area declines within and Comorbidities
1 month of SCI,[80,89] while electrical stimulation of

Epidemiological studies conducted in the earlymuscle paralysed for more than 1 year evokes forces
1980s, and thereafter, reported emergence of cardio-only one-seventh to one-third those of subjects with-
vascular disease as a major cause of death in personsout SCI.[85,86,94] Physiological and contractile
with SCI.[1,3,24,105] While genitourinary complica-properties adopted after SCI further compromise the
tions accounted for 43% of deaths in the 1940s andability of muscle without motor sparing to optimally
1950s, mortality from these causes were reduced toincrease in size and metabolic activity after exercise
10% of cases in the 1980s and 1990s.[24,106,107] Car-reconditioning,[95] which has adverse consequences
diovascular diseases currently represent the mostfor cardiovascular, musculoskeletal and comorbid
frequent cause of death among persons survivingdiseases to which those with SCI are highly suscep-
>30 years after injury (46% of deaths) and amongtible.
persons >60 years of age (35% of deaths)[107,108]Persons sustaining SCI develop muscles below

the level of the lesion that are either hypertonic or Decline of cardiovascular function in persons
atonic depending on the level and type of SCI. aging with SCI mirrors that experienced by persons
Hypertonia is the more common condition in which who age without SCI, although at an accelerated
exaggerated rate-dependent stretch results in spastic rate.[23] Asymptomatic cardiovascular disease also
contraction. This results from damage to the upper occurs at earlier ages after SCI[108,109] and its symp-
motor neurons alone, in which descending inhibition toms may be masked by interruption of ascending
of reflex response in interrupted by cord injury. afferent pain fibres conveying warnings of impend-
Hypertonia in these individuals can by worsened by ing heart damage or death.[108-110] Several major risk
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factors commonly reported in persons with SCI have been firmly identified, although physical inactivi-
ty,[127] truncal obesity[113,114] and sympathetic dys-been linked with their accelerated course of cardio-
function[111,112] have been suggested as causes. Anvascular disease; these include dyslipidaemia[7,22,78]

association may also exist between their abnormaland a sedentary lifestyle imposed by muscle paraly-
lipid profiles and insulin resistance. Such an associ-sis and limited exercise options.[8,9] The cardiovas-
ation has been identified in persons without SCIcular disease risks of individuals without SCI are
having depressed serum HDL-C, as they are alsoworsened by hyperinsulinaemia[22,111,112] and elevat-
especially prone to insulin resistance.[128-130] Thised percentages of body fat,[113,114] which are com-
risk profile closely matches that of persons withmon among persons with SCI.[24]

SCI, in whom isolated low HDL-C and insulin resis-An atherogenic lipid profile is commonly report-
tance are often comorbid.[51]

ed in persons with chronic SCI.[22,78,112-115] This lipid
profile satisfies criteria for designation as ‘dys-

2.4 Cardiac Structure and Function
lipidaemic’, i.e. elevated total cholesterol (TC), trig-
lyceridaemia and plasma low density lipoprotein- Individuals with chronic SCI experience various
cholesterol (LDL-C) or depressed high density lipo- types of circulatory dysregulation depending on the
protein-cholesterol (HDL-C).[116] All have all been level of their cord lesion.[96] When injury occurs
reported in sedentary persons with SCI, although above the level of sympathetic outflow at the T1
elevated TC is not observed in all of these stud- spinal level, resting hypotension with mean arterial
ies,[115,117] and LDL-C concentrations, while some- pressures of 70mm Hg are common.[131] In addition
times elevated, show patterns of elevation typical of to challenging effective orthostatic pressure regula-

tion, low pressures also instigate altered heart struc-those reported in the general population.[115] The
ture and function observed after SCI.[132] As size andmost consistent finding of reports examining the
architecture of the human heart are known to belipid profiles of persons with SCI is a depressed
influenced by peripheral circulatory volume andblood plasma concentration of the cardioprotective
systemic pressures, withdrawal from normal activityHDL-C[22,78,114,115,118,119] whose levels are inversely
levels and altered circulatory dynamics transformassociated with cardiovascular risk.[120] More than
the structure of the heart and alter its pumping40% of persons with SCI have HDL-C levels below
efficiency.[133] For those with tetraplegia, a chronicthe earlier criterion score for high cardiovascular
reduction of cardiac preload and myocardial volumerisk (HDL >35 mg/dL). When combined with other
coupled with pressure underloading causes the leftknown risks factors for vascular disease in persons
ventricle to atrophy.[132,134] In contrast, long-termwith SCI (e.g. prevalent truncal obesity,[114] elevated
survivors of paraplegia are normotensive and havebody mass indices,[113] physical inactivity[8,9] re-
normal left ventricular mass and resting cardiacduced lean body mass,[95,113,121-123] diabetes,[124,125]

output, but experience a cardiac output comprised ofmetabolic syndrome X[126] and advancing age),[18]

elevated resting heart rate (HR) and depressed rest-the risks of abnormal lipid profile on disease pro-
ing stroke volume (SV).[28,134] This lowered SV isgression become magnified.
attributed to decreased venous return from the im-Insulin resistance occurring in a high percentage
mobile lower extremities or frank venous insuffi-of persons with SCI was first reported more than two
ciency of the paralysed limbs.[135,136]

decades ago.[125] Since that time, others have con-
firmed this finding and included insulin resistance 2.5 Vascular Structure and Function
among the cardiovascular risks sustained by persons
aging with SCI.[22,111,112,114,127] Almost half the per- The volume and velocity of lower extremity arte-
sons with SCI live in a state of carbohydrate intoler- rial circulation is significantly diminished after SCI,
ance or insulin resistance.[22,125] A reason for preva- with volume flow of about half to two-thirds that
lent insulin resistance in persons with SCI have not reported in matched subjects without paraly-
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sis.[56,137] This circulatory ‘hypokinesis’[138] results sence of, or meagre catecholamine responses to,
from loss of autonomic control of blood flow as well exercise in these individuals have been reported[161]

as diminished regulation of local blood flow by and explains their suppressed HR responses to exer-
vascular endothelium.[56] The lowering of volume cise. Thus, cardiac acceleration during exercise im-
and velocity contribute to heightened thrombosis plies withdrawal of vagal tone and not increased
susceptibility commonly reported in those with sympathetic drive.
acute and subacute SCI.[58] A contributing factor to Few direct clinical comparisons can be made
thrombosis disposition appears to be a markedly between persons having SCI above and below the
hypofibrinolytic response to venous occlusion of the highest level of sympathetic outflow at T1 (i.e. be-
paralysed lower extremities,[139] a poor response tween those persons whose motor status results in
likely attributable to low blood flow conditions in tetraplegia and paraplegia). Testing of subjects hav-
the paralysed lower extremities[54,56] or interruption ing inhomogeneous lesion levels usually leads to
of adrenergic pathways that regulate fibrinolysis in widely variable chronotropic, pressor, fuel, periph-
the intact neuraxis.[59] eral circulatory, thermal and work capacity re-

sponses. For those with paraplegia from T2 to T5 (or
T6), sparing of sympathetic efferents to the heart2.6 Autonomic Dysregulation
with resulting noradrenergic-mediated cardiac ac-

Like those of the motor system, sympathetic celeration will be observed. A relatively normal
nerve tracts descend in the spinal cord, albeit within response is observed below T5 or T6,[162] as central
the intermediolateral columns and not the corticos- inhibitory control of the adrenals (normally inner-
pinal tracts, and exit with motor nerves in the vated from T6–T9) is regained below these
thoracolumbar segments. As no sympathetic auto- levels.[158]

nomic tracts exit the cord above the T1 spinal level,
individuals with cervical injuries often sustain 3. Volitional Upper Extremity Exercise in
decentralisation of their sympathetic nervous sys- Persons with SCI
tem. Loss of autonomic outflow to the adrenals is
also observed in persons with paraplegia above the
T6 spinal level. Injury above the sacral cord seg- 3.1 Acute Physiological Responses to
ments abolishes central parasympathetic regulation Exercise Stress
of genitourinary organs (S2-4), which explains the
common occurrences of neurogenic bowel and blad- SCI blunt the expected physiological responses
der after SCI, as well as erectile dysfunction in to exercise and diminish peak exercise capacity.[163]

males.[140] Autonomic dysfunction that results from These limitations are associated with the level of
injury above the thoracolumbar levels of sympathet- SCI, and are explained by various factors. First,
ic nerve outflow is associated with cardiac and cir- ascending levels of injury cause greater loss of mus-
culatory dysfunction,[34,132] clotting disorders,[58] al- cle mass necessary to serve as prime movers and
tered insulin metabolism,[112,125] resting and exercise stabilisers of trunk position. This requires that the
immunodysfunction,[65,141-151] orthostatic incompe- arms simultaneously generate propulsive forces and
tence,[152] osteoporosis and joint deterioration,[60,153] steady the trunk during exercise. Secondly, increas-
and thermal dysregulation at rest and during exer- ing levels of injury are associated with increasing
cise.[154-157] A blunted chronotropic response to ex- adrenergic dysfunction, and at key spinal levels
ercise in persons with tetraplegia is well document- dissociate adrenal, cardiac and total sympathetic
ed,[158-160] and usually yields peak HRs in the nervous system control from the brain. As the adren-
mid-120 beats/min range, similar in magnitude to ergic and noradrenergic systems play key roles in
persons without SCI who exercise under conditions cardiovascular regulation and fuel homeostasis dur-
of pharmacological adrenergic blockade. The ab- ing exercise, their loss attenuates the cardiovascular
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and metabolic efficiencies achieved in persons with injuries below T5 may be due to adrenergic overac-
tivity accompanying their paraplegia.[158,161,169]an intact neuraxis.

Many studies have observed a direct association
3.2 Cardiorespiratory Testingamong level of injury, peak workload attained and

peak oxygen uptake (V̇O2peak) reached during arm
Assessment of cardiorespiratory fitness in per-

crank testing. This association serves as the basis for
sons with SCI requires specialised knowledge of

sports classification used during paralympic and both exercise testing procedures and the unique
other sports events for persons competing with physiology that ensues SCI. Exercise testing modal-
physical disability. Exercise performance after SCI ities for these individuals commonly employ over-
is limited by circulatory dysregulation accompany- ground wheelchair propulsion on a treadmill or
ing thoracic injuries.[138,156,159,164-166] Individuals wheelchair rollers, cyclical arm ergometry and vari-
with injuries below the level of sympathetic outflow ations of electrically stimulated exercise. Exercise
at T6 have a significantly lower resting SV and testing by wheelchair propulsion offers the advan-
higher resting HR than persons without paraple- tage of comparison to many wheelchair-based daily
gia.[156,159,167] The significant elevation of resting tasks. However, wheelchair propulsion testing gen-
and exercise HR is thought to compensate for a erally requires specialised equipment. Also, it is not
lower cardiac SV imposed by pooling of blood in the known whether testing is best when using a single
lower extremity venous circuits, diminished venous standardised wheelchair, in which the usual wheel-
return and cardiac end-diastolic volumes, or frank chair-used interface is compromised, or having sub-
circulatory insufficiency.[138,168] Adjustments to the jects use their habitual chair, in which some individ-
adrenergic systems after SCI may also regulate the uals may be advantaged by better equipment. These
excessive chronotropic response to work, as higher factors limit use of wheelchair ergometry as a re-
resting catecholamine levels and exaggerated cat- search and clinical testing tool.
echolamine responses to physical work have been The exercise test mode most commonly used in
reported in individuals with paraplegia with middle the cardiorespiratory testing of persons with SCI is
thoracic (T5) cord injuries. These exceed resting and the arm crank ergometer. The lack of task specificity
exercise levels of both high level paraplegics and to wheelchair mobility has been considered a limita-
healthy persons without SCI.[155,169] Hypersensitivi- tion to their usefulness. However, as these devices
ty of the supralesional spinal cord is believed to are generally found in the rehabilitation environ-
regulate this atypical adrenergic state and dynamic, ment and allow standardised application of testing
which contrasts the downregulation of adrenergic stresses, it represents the most frequently used
functions observed in persons with high thoracic and means for clinical or fitness assessment of wheel-
cervical cord lesions.[155,161]

chair users. Reliable test results require consistent
An exaggerated HR response is experienced dur- positioning of the test subject and the ergometer.

ing physical activity by persons with paraplegia,[158] The test subject and the cranking ergometer should
which may be performance delimiting. This belief is be positioned so that the axis of the crank arm is

horizontally aligned with the subject’s shoulderconsistent with reports in which subjects with para-
joint and the elbows are slightly flexed at the pointplegia require higher levels of V̇O2 to perform
of furthest reach. To ensure enhanced reliability ofthe same work intensity as subjects without
test results, care should be taken to replicate subjectSCI[32,138,156,170] and may represent a limiting factor
positioning and to use the same wheelchair andin the performance of activities of daily liv-
cushion. The latter may affect seating stability anding.[21,156,171] As the sympathetic nervous system
exercise efficiency.regulates haemodynamic and metabolic changes ac-

companying exercise, the elevated V̇O2 and HR Cardiorespiratory exercise testing of persons
response to work in individuals with paraplegia with with SCI follows the same general protocols as
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testing in the general population. In most cases, the cardiac output [Q̇]) adaptations or increases in pe-
graded multi-stage tests proceed in 2- to 3-minute ripheral oxygen extraction (a-V̇O2 difference), or
stages until volitional exhaustion. As V̇O2peak is whether central adaptations take place at all. Only
dependent on level of SCI, lower intensity loads are one endurance training study examining 16 weeks of
applied than those used in standard exercise testing. intense arm exercise observed clear evidence of
These workloads have been detailed in several pub- central cardiovascular benefit.[176] Notwithstanding
lications,[172-175] although no particular advantage the mechanisms contributing to increased V̇O2peak
for a single testing strategy has been tested or estab- after arm exercise training, many studies report indi-
lished. However, accurate and valid results require viduals with paraplegia improve their V̇O2peak by
that testing utilise metabolic monitoring to establish 10–20% following 8–12 weeks of training. These
the V̇O2peak, as prediction equations normally used gains are inversely proportional to the level of SCI,
to estimate maximal responses in persons without as those with higher levels of injury attain lower
disability have not been validated in those with SCI. peak exercise capacities on arm exercise test than

those with lower-level SCI, and both groups lower
than persons without disability tested by arm3.3 Endurance Training
ergometry.

In most cases, injury to the spinal cord renders Endurance training recommendations for those
the lower extremities without sufficient strength, with SCI do not vary dramatically from advice di-
endurance or motor control to support safe and rected to the general population.[192-194] The Ameri-
effective physical training. This explains why most can College of Sports Medicine recommended train-
exercise training after SCI employs upper extremity ing frequencies, durations and intensities are con-
exercise modes including arm crank ergometry, tained in Exercise Management for Persons with
wheelchair ergometry and swimming. All of these Chronic Diseases and Disabilities.[192] Generally,
training modes improve V̇O2peak in those with three to five weekly exercise sessions of 20–60
SCI,[27,32,172,176-186] with the magnitude of improve- minutes in duration and at an intensity of 50–80%
ment inversely proportional to level of spinal lesion. V̇O2peak is the recommended exercise prescription
While it is possible for persons with low tetraplegia for persons with paraplegia using the following
to train on an arm ergometer, special measures must modes of exercise:
be taken to affix the hands to an ergometer and their • arm cranking
gains in V̇O2peak fail to match those of their SCI • wheelchair propulsion
counterparts with paraplegia.[187] Therefore, the lev-

• swimming
el of injury is a key to predicting outcome from arm

• wheelchair sportsendurance training.[188,189] Guidelines for training
• circuit resistance training (CRT)after SCI have been published by several authori-
• electrically stimulated cyclingties,[32,52,172] although testing for superiority of train-
• electrically stimulated walking.ing algorithms has not been performed. However,

given that most persons with SCI are sedentary long This reference suggests that target exercise inten-
after injury and the accepted dictum that training sities should produce HR responses equivalent to
best benefits the most deconditioned individuals, 50–80% of the individual’s peak HR. As in the
these methods are nonetheless successful in achiev- general population, excessive exercise volume has
ing higher levels of fitness. been associated with increase pain and injury. Thus,

Benefits of arm conditioning are widely reported exercise frequency and duration should be carefully
for persons with SCI, with many studies reporting monitored and gradually increased with the input of
significant increases in V̇O2peak after train- certified exercise professionals familiar with the
ing.[27,185-187,190,191] It is less clear whether the unique physiological responses of persons with SCI
changes in V̇O2peak result from central (HR, SV, to exercise. As long-term compliance and injury
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avoidance are major goals of training, erring on the were limited to subjects assigned high-intensity
conservative side of selected exercise durations and training, and occurred only in the shoulder joint
intensities are prudent and more important for per- extensor and elbow flexor muscles. Otherwise, no
sons training with a disability than those without. changes in shoulder joint abduction or adduction

strengths were reported, and none of the muscles
that move or stabilise the scapulothoracic articula-3.4 Resistance Training for Persons with SCI
tion or chest were stronger following training. These

Far less is known about effects of resistance than results suggest that arm crank exercise is ineffective
endurance training in persons with SCI. This might as a training mode for upper extremity strengthening
seem counterintuitive, as muscle weakness has been because it fails to target the muscles most involved
reported to precipitate pain and dysfunction as per- in performance of daily activities.
sons with SCI age with their disability. Moreover,

Conditioning of five paraplegic and five te-
the most commonly reported symptom of upper

traplegic subjects three times weekly for 9 weeks
extremity physical dysfunction among persons with

was reported using a hydraulic fitness machine.[205]

SCI is pain of the shoulder joint and girdle.[66,195-200]

Exercises were limited to two manoeuvres: (i) chest
While a single cause for shoulder pain has not been

press/chest row; and (ii) shoulder press/latisimus
identified, deterioration and injury resulting from

pull.[205] Significant increases in peak values of V̇O2insufficient shoulder strength is one commonly cited
and power output measured by arm ergometry test-

source.[63,199-202] Pain that accompanies wheelchair
ing were observed at the conclusion of the study,

locomotion and other wheelchair activities reported-
although no testing was conducted that directly mea-ly interferes with functional activities including up-
sured strength gain in any muscle groups undergo-per extremity weight bearing for transfers, high re-
ing training. Another study focused their training onsistance muscular activity in extremes of range of
strengthening of the scapular muscles, although thismotion, wheelchair propulsion up inclines and fre-
study focused solely on the scapular retractor mus-quent overhead activity.[196,198-200] Onset of pain is
cles when comparing seated rowing and acommon during body transfer activities and severity
standardised scapular retraction exercise, and did soincreases as time following injury lengthens.[196]

only for concentric actions.[206] The authors foundGiven evidence that wheelchair locomotion is a
that higher levels of retractor activation were ob-major source of pain and dysfunction for persons
tained during backward compared with forwardwith SCI, incorporation of resistance training into
wheelchair locomotion and suggested that rowingthe healthcare plan of those with SCI appears both
was effective for improving scapular retractor activ-justified and essential.
ity and cardiorespiratory fitness. A recent studySeveral investigators have studied effects of re-
observed reduced shoulder pain following a series ofsistance exercise in persons with paraplegia. In a
shoulder resistance exercises using elastic bands.[63]

study of Scandinavian men (most of whom had
As both endurance and resistance exercise bene-incomplete low thoracic lesions) a weight-training

fit those without SCI, the effects of CRT[207] onprogramme emphasising triceps strengthening for
various attributes of fitness, dyslipidaemia andcrutch walking was undertaken for 7 weeks with
shoulder pain have been studied in young and mid-modest but significant increases in V̇O2peak ob-
dle-aged subjects with paraplegia. This exercise pro-served following training. These endurance gains
gramme incorporates periods of low-intensity high-were accompanied by increased strength of the tri-
paced movements interposed within activities per-ceps brachii.[203] Another study[204] examined the
formed at a series of resistance training stations. Theeffects of arm ergometry in subjects assigned to
CRT exercise programme adapted for persons withhigh-intensity (70% of their V̇O2peak) or low-inten-
paraplegia consisted of three circuits of six resis-sity training (40% of their V̇O2peak) for 20 or 40

minutes per session, respectively. Strength gains tance stations encompassing three pairs of agonist/
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antagonist movements (e.g. overhead press and pull) include site-specific stimulation of the lower ex-
and three 2-minute periods of free wheeling arm tremities[82,209-212] and upper extremities,[65,213-218]

cranking performed between resistance ma- leg cycling,[30,34,134,219-222] leg exercise with upper
noeuvres. No true rest periods were allowed during extremity assist,[222-225] lower body rowing,[50] elec-
the performance of CRT, with active recovery limit- trically assisted arm ergometry,[226,227] electrically
ed to the time necessary for the subject to propel the stimulated standing[76,217] and electrically stimulated
wheelchair to the next exercise station. Three week- bipedal ambulation either with[74-76,228,229]or without
ly sessions were completed with each session lasting an orthosis.[55,70,72,173,230-232] Most forms of exercise
approximately 45 minutes. Young subjects undergo- require that the lower motor neuron system remain
ing 16 weeks of mixed resistance and endurance intact following injury, as direct activation of the
exercise increased their arm V̇O2peak by an average peripheral nerve and not the muscle by electrical
of 29%, with accompanying strength gains of current ultimately results in muscle activation.[233]

13–40%, depending on the upper extremity site test- This reality excludes most individuals having cauda
ed.[174] Subjects undergoing CRT lowered their total equina or conus medullaris syndromes from electri-
and LDL-C while increasing their HDL-C by nearly cally stimulated exercise. It may also compromise
10%.[175] Subjects aged over 40 years undergoing the efficiency of a muscle having a denervated seg-
the same treatment for 12 weeks experienced signif- ment from injury to its anterior horn cells or spinal
icant gains in all of endurance, strength and anaerob- (Wallnerian) degeneration from injured adjacent
ic power, even though the latter was not specifically spinal areas. Many applications of SCI target muscle
targeted by training (Nash MS, unpublished data). strengthening of limb segments whose motor func-
Shoulder pain present in these subjects before train- tion is partially spared by injury,[76] while others use
ing was assessed by a pain instrument validated in electrical current as a neuroprosthesis for the lower
the population and significantly reduced. Pain was extremities[71,229] and upper extremities.[234-238]

eliminated in four of ten subjects. Most electrical stimulation devices currently ap-
In a separate study, the effects of circuit training proved for use by the US FDA employ surface, not

performed on an adapted multi-exercise system implanted, electrical stimulation. The most common
could be replicated by use of elastic bands.[208] Evi- uses of surface electrical stimulation for system
dence therefore supports health and fitness advan- exercise in those with SCI include electrically stim-
tages of CRT over either endurance or resistance ulated cycling, either with or without upper extremi-
exercises alone for persons with paraplegia. ty assistive propulsion and electrically stimulated

ambulation. Qualifications necessary to safely par-General recommendations for strength training
ticipate in exercise programmes have been de-exercise prescription include three sets of 8–12 repe-
scribed[71,72,233,239,240] and risks of participation aretitions per exercise movement for two sessions per
included in the section of this monograph addressingweek at moderate to high intensity using the follow-
adverse events associated with exercise by thoseing modes of exercise:
with SCI.• free weights

• weight machines
4.2 Leg Cycling Exercise• elastic tubing and bands.

The simplest form of multi-limb segmental exer-4. Electrically Stimulated Exercise in
cise for persons with SCI employs a cycling motionPersons with SCI
performed in a slightly recumbent seated position.
This electrically stimulated cycling uses electrically4.1 Basis of Electrically Stimulated Movement
activated contractions of the bilateral quadriceps,

Many forms of electrically stimulated exercise hamstrings and gluteus muscles under computer
are available for use by persons with SCI. These microprocessor command.[31] Control of pedal ca-
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dence and muscle stimulation intensity is exerted by creased rate of bone turnover by another,[10] al-
feedback provided from position sensors placed in though the sites benefiting from training are the
the pedal gear.[241] lumbar spine and proximal tibia, not the proximal

femur.[249] Not all studies have found a post-trainingTraining with electrically stimulated cycling is
increase in mineral density for bones located belowoften preceded with electrically stimulated strength-
the level of the lesion.[250] Those that fail to do soening of the quadriceps muscles, which is necessary
have usually studied subjects with longstanding pa-in cases of severe muscle atrophy or diminished
ralysis, in which attenuation or reversal of oste-muscle endurance.[209,221] Responses to electrically
opaenia by any treatment has yet to be reported.stimulated exercise are variable, ranging from poor
Notwithstanding, a study examining the appearanceto robust. As noted, poor muscle strength and endur-
of lower extremity joints and joint surfaces usingance and altered muscle contractile properties nor-
magnetic resonance imaging reported no degenera-mally accompany SCI. In general, these factors will
tive changes induced by cycling, and less joint sur-slow success in training, especially in those individ-
face necrosis than previously reported in sedentaryuals with longstanding paralysis, absent spasticity
persons with SCI.[60] Improved body compositionand flexor patters of spasticity. Electrically stimulat-
favouring increased lean mass and decreased fated strength training programmes are capable of al-
mass[251] and an enhancement of whole-body insulintering the strength, resistance to fatigue and contrac-
uptake, insulin-stimulated 3-0-methyl glucose trans-tile properties of the muscles undergoing the train-
port and increased expression of GLUT4 transporting. Dudley and associates,[209] demonstrated the
protein in the quadriceps muscle have been report-effectiveness of a simple programme of electrically
ed.[252] In a recent report, this training has resulted ininduced knee extensions, performed twice weekly
improved profiles of insulin resistance.[253] Whenover an 8-week period, dramatically reversed mus-
combined with simultaneous upper extremity armcular atrophy of the quadriceps muscles.
ergometry, the acute cardiovascular metabolic re-Notwithstanding poor levels of muscle strength
sponses to electrically stimulated cycling are moreand endurance early in most training programmes
intense and the gains in fitness greater than observedand despite limited ability to exercise against intense
with lower extremity cycling alone.[224,253]workloads, enhanced levels of fitness,[224,242,243] im-

proved gas exchange kinetics[244,245] and increased
muscle mass[218] have been reported following exer- 4.3 Bipedal Ambulation
cise training using electrically stimulated cycling.
For those with neurologically incomplete injuries, Complex electrical stimulation to achieve bipe-
gains in lower extremity mass, as well as isometric dal ambulation has been used as a neuroprosthesis
strength and endurance under conditions of volunta- for those with motor-complete injuries[71,72,228,239,254]

ry and electrically stimulated cycling have been and an assistive neuroprosthesis for persons with
reported.[218] Reversal of the adaptive left ventricu- incomplete SCI who lack necessary strength to sup-
lar atrophy reported in persons with tetraplegia has port independent ambulation.[255-263] Surface and im-
also been observed, with near normalisation of pre- plantable neuroprostheses for those without spared
training cardiac mass.[134] This change may be asso- motor function have both been fabricated,[76,264] al-
ciated with significantly improved lower extremity though the sole method currently approved by the
circulation following training,[246,247] which is also FDA (Parastep-1®)1 uses surface electrical stimula-
accompanied by a more robust hyperaemic response tion of the quadriceps and gluteus muscles.[72,230]

to experimental occlusion ischaemia.[55,56] Muscle activation is sequenced by a microprocessor
Attenuation of paralytic osteopaenia has been worn on the belt, with activation of step initiated by

observed by several investigators[248,249] and an in- a finger-sensitive control switch located on a rolling

1 The use of trade names is for product identification purposes only and does not imply endorsement.
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walker used by ambulating subjects. When pressed, augmented hyperaemic response to an experimental
ischaemic stimulus.[55] No change in lower extremi-the electrical stimulator sends a current to the stance
ty bone mineralisation following has been report-limb that initiates contraction of the quadriceps and
ed,[232] although most subjects participating in re-gluteus muscles. Contralateral hip flexion is then
search trials of electrically stimulated exercise areachieved by exploiting an ipsilateral flexor with-
beyond the duration of injury at which reversal ofdrawal reflex obtained by introducing a nociceptive
their neurogenic osteoporosis is expected.[232]electrical stimulus over the common peroneal nerve

at the head of the fibula. This allows the hip, knee
5. Risks of Exercise When Performed byand ankle to move into flexion followed by exten-
Persons with SCIsion of the knee joint by electrical stimulation to the

quadriceps. As muscle fatigue occurs increasing Special attention is required when designing, in-
levels of stimulation can be provided by a switch stituting or performing exercise programmes for
mounted on the handle of the rolling walker. persons with SCI. Some of the risks encountered

As in the case of electrically stimulated cycling, will be similar to those experienced by persons
functional use of ambulation neuroprostheses by without paralysis, although complications such as
those with paraplegia are compromised by post- general overuse may be exaggerated in persons with
injury muscle weakness and poor endurance. These SCI, and their occurrence will likely compromise
need to be addressed in subject preparation before daily activities to a far greater extent than similar
ambulation training is initiated. Electrically activat- injuries arising in persons without SCI.
ed knee extensions against progressively increased

5.1 Autonomic Dysreflexiaresistance (sandbag at ankle) is the standard training
exercise. While not as commonly addressed, condi-

Individuals having cord injuries at or above the
tioning of the gluteal muscles with electrically pro-

T6 spinal level are prone to episodes of autonomic
duced hip bridging (in supine position) prior to

hyperreflexia when exposed to noxious stimuli.[266]

bodyweight-supported gait training will enhance the The neurological basis for these episodes involves
response of the hip extensors to electrical stimula- loss of supralesional sympathetic inhibition that nor-
tion. A single most effective protocol to satisfy mally suppresses the unrestricted autonomic reflex
requisite strength and endurance needs for upright accompanying such exposure. This allows the ad-
ambulation training has not been reported. Howev- renals to release high concentrations of epinephrine
er, it is inadvisable to undertake electrically stimu- (adrenaline) under reflex control and infralesional
lated ambulation training until the ability to stand adrenergic targets to experience the full measure of
with electrical stimulation for at least 3–5 minutes reflex noradrenergic stimulation.[267] The most com-
has been demonstrated. mon stimuli evoking autonomic dysreflexia are

Once training is initiated, rates of ambulation are bladder and bowl distention before their emptying.
relatively slow and distances of ambulation relative- Other stimuli include venous thromboembolism,
ly limited when using the system,[229] and the com- bone fracture, sudden temperature change, febrile
munity use of these devices remains limited to a episodes and exercise. The disposition to autonomic
small percentage of training subjects. Despite the dysreflexia during exercise is especially heightened
limitations of ambulation velocity and distance, am- when an electrical current is used to generate muscle
bulation distances of up to 1.6km (1 mile) have been movement, or when exercising while febrile or dur-
reported after training in some subjects[229] and up- ing bladder emptying. Episodes of autonomic dys-
per extremity fitness is enhanced following ambula- reflexia are characterised by hypertension and
tion training.[71,173] Other adaptations to training in- bradycardia, supralesional erythema, piloerection
clude significantly increased lower extremity mus- and headache. In some cases, hypertension can rise
cle mass,[265] improved resting blood flow[55] and an to the point where crisis headache results, and cere-
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bral haemorrhage and death might ensue. Recogni- vironment controlled for temperature and humidi-
tion of these episodes, withdrawal of the offending ty.[278,282] Thus, attention should be paid to hydration
stimulus, and the possible administration of a fast- and, if possible, limiting the duration and intensity
acting peripheral vasodilator may be critical in of activities performed in intemperate environ-
preventing serious medical complications. Prophy- ments.
laxis with a slow calcium channel antagonist or
α1-selective adrenergic antagonist may be needed 6. Conclusions
prior to exercise.[268-270] It is known that wheelchair

Multisystem organ dysfunction is common afterracers have intentionally induced dysreflexia as an
SCI. Depending on the level of injury, alterations ofergogenic aid by restricting urine outflow through a
cardiac function, peripheral circulation, autonomicFoley catheter,[271] which represents a dangerous
function, skeletal integrity, muscle composition andand possibly life-threatening practice.
genitourinary functions all accompany an SCI. The

5.2 Musculoskeletal Injury fact that many of these pathological system changes
are reversible permits better understanding of theFracture and joint dislocation of the lower ex-
roles played by central innervation and physicaltremities is a risk of participation in exercise by
activity on organ system function in persons withthose with SCI, and may be caused by asynergistic
intact neuraxes. As levels of injury, types of injurymovement of limbs against the force imposed by
and the extent of organ system dysfunction varyeither electrical stimulation or the device used for
among persons with SCI, careful attention must beexercise.[36] This explains why these activities are
paid to accurate classification of individuals beforecontraindicated for individuals with severe spastici-
entry into clinical treatment or study. The use ofty or spastic response to the introduction of electri-
homogeneous subject populations based on similarcal current. Precautions to prevent overuse injuries
levels, types and durations of injury is especiallyof the arms and shoulders must be taken for those
important if conclusions concerning deconditioningparticipating in upper extremity exercise.[201,206,272]

and reconditioning in these persons are to beAs the shoulder joints are mechanically ill-suited to
reached.perform locomotor activities, but must do so in

Despite these special needs and warnings, manyindividuals using a manual wheelchair for transpor-
persons with SCI benefit from sustained therapeutictation, these injuries may ultimately compromise
and recreational exercise. Individuals with higherperformance of essential daily activities including
levels of cord injury may require electrical stimula-wheelchair propulsion, weight relief and depression
tion to perform exercise, which poses special restric-transfers.[273,274]

tions on use and unique risks from participation.
Qualified individuals safely improved cardiovascu-5.3 Hypotension
lar and musculoskeletal functions. Positive benefits

Small risks of post-exercise hypotension[131,275]
of training on bone density, regulation of orthostatic

are associated with lost vasomotor responses to or- tolerance and affect have been reported in studies
thostatic repositioning,[276] although these episodes with limited numbers of subjects and require well
can abate after upper limb training. controlled investigations for confirmation. Individu-

als with spared motor control of the upper extremity
5.4 Thermal Dysregulation

can perform arm or wheelchair exercises and partici-
Individuals with SCI often lack sudomotor re- pate in recreational sports. Greater emphasis needs

sponses below their level of injury and are thus to be placed on strengthening of the upper extremity
challenged to maintain thermal stability.[154,277-279] to preserve shoulder and arm functions for perform-
These responses are less pronounced as the level of ance of daily living as these individuals age with
SCI descends,[280,281] and when exercising in an en- their paralysis. Risks of injury or illnesses associat-
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