Introduction to the Bioimaging Centre

Christian Hacker, Martin Schuster, Ana Correia, Mandy Schuster and Gero Steinberg
Biosciences, Geoffrey Pope building, College of Life and Environmental Sciences, Stocker Road, Streatham campus, University of Exeter

Light Microscopy

Wide Field Microscopes
- **Zeiss Axiophot**
- **Olympus IX81**

Main Features
- Mercury arc lamp
- 10-100x objectives
- Filter sets: DAPI/blue/yellow/green/red
- GFP/RFP Dual cube
- Cool snap HQ2 CCD b/w camera
- TIRF System
- 488nm 561nm 50mW solid state lasers
- 405nm 100mW Blue diode
- Inverted microscope
- Resolution 200nm
- D-VisiFRAP Realtime Scanner

Applications
- Detection of faint signals
- Use of 2 different colour probes at once
- 100ms frame rate
- Time lapse imaging
- Single molecule assays in TIRF
- 3D Reconstruction
- FRAP / Photo activation

Confocal Laser Scanning Microscopes
- **Leica TCS SP8**
- **Zeiss LSM 510**
- **Nikon A1**

Main Features
- Lasers: Diode 405 30mW 405nm
- Argon/2 30mW 458,477,488,514nm
- He Ne 1.2mW 543nm
- He Ne 5.0mW 633nm
- Objectives: 10x – 100x, plus optical zoom
- Adjustable Pinhole
- Environmental chamber

Applications
- Life cell imaging
- Permits optical sectioning of sample
- Localisation of your particle of interest withing a cell
- Use of 3 or 4 different colour probes at once
- Co-localisation of different particles
- FRET, FRAP and other specialised bleaching techniques
- 3D Reconstruction
- Emission fingerprinting

Spinning Disc Confocal Microscope
- **Olympus IX81**

Main Features
- Lasers: Blue diode 405nm
- Solid State Lasers: 488nm
- Objectives: 10x – 100x
- Environmental chamber
- 2D-VisiFRAP Realtime Scanner
- CSU-X1 Spinning Disc unit (Yokogawa)
- Eppendorf micro injector

Applications
- Life cell imaging
- Time series capture
- Permits optical sectioning of sample
- Localisation of your particle of interest within a cell
- Co-localisation of different particles
- FRAP and other specialised bleaching techniques
- 3D Reconstruction
- Injection of antibodies, dyes, drugs or siRNA into single cells

Electron Microscopy

Jeol Jem 1400 Transmission Electron Microscope

Main Features
- Acc. voltage 40,60,80,100,120kV
- Resolution: 0.38nm
- Motorized Goniometer
- Range of specimen holders including High Tilt +/- 70°
- Gatan ES100w CCD camera
- Gatan Tomography Software

Applications
- Cell Ultrastructure
- Immunogold labelling
- Negative staining
- Tomography
- Nano particles
- Jet Propane/Freeze Substitution

Jeol JSM 6390LV Scanning Electron Microscope

Main Features
- Acc. voltage 0.5-30kV
- Detectors: SEI (Secondary electrons) resolution 3.0mm
- BSE (Backscattered electrons) resolution 4.0mm
- LV mode (Low Vacuum)
- Gatan Alto 2100 Cryo-Preparation

Applications
- SEI: Topographical observation of surface
- BSE: Compositional observation of surface
- LV: Observing non-conducting specimen without metal coating
- Cryo-observation: Freeze fixation, ability of fracturing frozen specimens allowing internal surfaces to be scanned.

Jeol JSM 6390LV Transmission Electron Microscope

Main Features
- Acc. voltage 40,60,80,100,120kV
- Resolution: 0.38nm
- Motorized Goniometer
- Range of specimen holders including High Tilt +/- 70°
- Gatan ES100w CCD camera
- Gatan Tomography Software

Applications
- Cell Ultrastructure
- Immunogold labelling
- Negative staining
- Tomography
- Nano particles
- Jet Propane/Freeze Substitution

Jeol JSM 6390LV Scanning Electron Microscope

Main Features
- Acc. voltage 0.5-30kV
- Detectors: SEI (Secondary electrons) resolution 3.0mm
- BSE (Backscattered electrons) resolution 4.0mm
- LV mode (Low Vacuum)
- Gatan Alto 2100 Cryo-Preparation

Applications
- SEI: Topographical observation of surface
- BSE: Compositional observation of surface
- LV: Observing non-conducting specimen without metal coating
- Cryo-observation: Freeze fixation, ability of fracturing frozen specimens allowing internal surfaces to be scanned.