UCAS code |
1234 |
Duration |
1 year full time
2 years part time 3 years part time
|
Entry year |
2021 |
Contact |
Programme Director: Dr Anna Murray Web: Enquire online Phone: +44 (0)1392 725500
|
Overview
Due to Covid-19 all modules on the Genomic Medicine Programme will be delivered online for the 2020/21 academic year, with the exception of the Counselling module which will delivered on campus with social distancing if possible. It will not be necessary for students to be in Exeter, the majority of modules will be asynchronous, giving students the flexibility to study at their own pace at a time that is convenient for them. Students will be fully supported in their online learning with access to academic tutors throughout. Some optional on-campus tutorials will also be offered
- Taught by world-leading academics in genomics research, including multifactorial traits, rare disorders, pharmacogenomics and epigenetics.
- Developed by Health Education England and is aligned with their vision to prepare the NHS for the legacy of the 100,000 Genomes Project
- You can opt to study for a 60 credit PG Certificate or 120 credit PG Diploma, by selecting a combination of any of the modules on offer
- Funded places from Health Education England are available for a maximum of four modules, the equivalent of a PG Certificate, for NHS professionals.
- You will study the genomics and informatics of rare and common diseases, cancer and infectious diseases, which can be applied to clinical practice and medical research
83% of research in Clinical Medicine classified as world-leading or internationally excellent
Top 10 in the UK for world-leading and internationally excellent research in Public Health, Health Services and Primary Care
Major capital investment in new buildings and state-of-the-art facilities
Limited number of HEE funded places for NHS professionals
Entry requirements
Standard entry
Normally a min 2.2 Honours degree (or equivalent) in a relevant discipline. Relevant clinical or professional experience may be taken into consideration as evidence of equivalency.
Individuals who don't meet the normal entry criteria but have relevant professional experience will also be welcomed on to this MSc programme. Qualifications and experience will be assessed on application and there will be opportunities for APL (Assessment of Prior Learning).
Entry requirements for international students
English language requirements
• IELTS: Overall score 6.5. No less than 6.0 in any section.
• TOEFL: Overall score 90 with minimum scores of 21 for writing, 21 for listening, 22 for reading and 23 for speaking.
• Pearson: 58 with no less than 55 in all communicative skills
Please visit our international equivalency pages to enable you to see if your existing academic qualifications meet our entry requirements.
International students are normally subject to visa regulations which prevent part-time study. It is recommended that international students apply for the level of the final award you intend to complete i.e. PGCert, PGDip or Masters, due to the associated cost and requirements for a Tier 4 student Visa.
Entry requirements for international students
Please visit our entry requirements section for equivalencies from your country and further information on English language requirements.
Read more
Entry requirements for international students
English language requirements
Please visit our entry requirements section for equivalencies from your country and further information on English language requirements.
Course content
Practice in the clinical professions will be transformed by genomic technologies and information within the next decade.
This MSc programme has been developed by Health Education England and is aligned with their vision to prepare the NHS for the legacy of the 100,000 Genomes Project.
This will be achieved through education and training that is focused on developing skilled graduates who can apply genomic medicine for patient benefit.
The programme is offered by a network of seven universities across England and includes study of the genomics and informatics of rare and common diseases, cancer and infectious diseases, which can be applied to clinical practice and medical research. The programme enhances knowledge and skills in this rapidly evolving field.
Students are likely to be clinical practitioners, diagnostic service providers, scientists, researchers and those aspiring to specialise within an academic career pathway.
Awards
The programme is also divided into units of study called ‘modules’ which are assigned a number of ‘credits’. The credit rating of a module is proportional to the total workload, with one credit being nominally equivalent to 10 hours of work, a 15 credit module being equivalent to 150 hours of work and a full Masters degree being equivalent to approximately 1,800 hours of work. Therefore, for applicants who are working full time (or close to full-time), we recommend applying to complete the Masters degree over 2 or 3 years rather than 1 year.
To gain a Masters qualification, you will need to complete 180 credits at level 7.
It is also possible to exit with a PGCert after completing 60 credits of taught modules or a PGDip after completing 120 credits of taught modules. The list of modules below shows which are compulsory.
View diagram of award structure
Contact Days
View the draft timetable of contact days for 2020/21
View the draft timetable of contact days for 2021/22
Please note: this timetable is draft and subject to change
The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.
The full MSc course comprises 180 credits made up from seven core modules: six taught modules of 15 credits each and one research module of either 60 or 30 credits. A range of optional modules is available for you to design your own learning experience to complement your career needs, and to complete the full 180 credits required.
The PG Diploma comprises 120 credits made up of any modules of your choice.
The PG Certificate comprises 60 credits made up of any modules of your choice.
Fees
2021/22 entry
Fees are subject to an annual increment each academic year.
UK fees
- MSc: £10,350 full-time; £5,175 pa part-time (2 years); £3,600 pa part-time (3 years)
- PGDip: £3,625 pa part-time (2 years)
- PGCert: £3,600
Standalone module fees: UK: £900 per 15-credit module
Credit bearing modules: If you opt to take a non-accredited module and wish to then fully accredit this with the University of Exeter, you will need to pass the assessed elements of the course within 6 months of completion and there is an additional £200 accreditation fee.
International fees
- MSc: £22,000 full-time
- PGDip: £14,500 full-time
- PGCert: £7,250 full-time
Standalone module fees: International £2,000 per 15-credit module
Scholarships
The University of Exeter is offering scholarships to the value of over £4 million for students starting with us in September 2021. Details of scholarships, including our Global Excellence scholarships and GREAT scholarships (British Council and the GREAT Britain Campaign) for international fee paying students, can be found on our dedicated funding page.
Funding and scholarships
UK government postgraduate loan scheme - Postgraduate loans of up to £10,609 are now available for Masters degrees. For more information and to apply for funding view the .
Funding
There are various funding opportunities available including Global excellence scholarships. For more information visit our Masters funding page.
Funding for NHS professionals - Funded places from Health Education England are available for a maximum of four modules for NHS professionals. For more information and to apply for funding download the Genomics HEE funding application form. HEE funding, however, does not guarantee a place on this academic programme at the University of Exeter. This will be decided through the standard university application, plus an informal discussion for those students choosing a PG Certificate, PG Diploma or full MSc.
Scholarships
The University of Exeter is offering scholarships to the value of over £4 million for students starting with us in September 2021. Details of scholarships, including our Global Excellence scholarships for international fee paying students, can be found on our dedicated funding page.
Pro Vice Chancellor's NHS Postgraduate Scholarship - The College of Medicine and Health is delighted to offer the Pro Vice Chancellor's NHS Postgraduate Scholarship of £5000 to two NHS staff who accept a place to study on one of our Masters programmes enrolling in 2020. Please check your eligibility before applying.
Read more
Teaching and research
In the College of Medicine and Health, our purpose is to deliver transformative education that will help tackle health challenges of national and global importance.
Teaching
Using a mix of learning formats, our modules each run over a 6-8 week period and include three days' intensive face-to-face teaching, interspersed with distance learning and independent study.
The Fundamentals module will include an additional day of student contact. Online learning will be supported by academic tutors and discussion fora.
Learning
All learning will be patient focused, using clinical scenarios and a variety of learning and teaching methods to promote a wide range of skills and meet differing learning styles, including seminars, group work, practical demonstrations and exercises surrounding interpretation of data.
Teaching will be delivered by experts from a range of academic and health care professional backgrounds are chosen to ensure a breadth and depth of perspective, giving a good balance between theories and principles, and practical management advice.
Distance Learning
Distance learning is delivered through a virtual learning environment, delivering a library of study materials including recordings of all live lectures, virtual patients and independent learning tasks, reference materials and links to online tutorials.
There is an opportunity to undertake a research module either using genomic data from either the 100,000 Genomes project or our in-house data, or a literature-based dissertation.
Read more
Dr Anna Murray
Programme Director
Dr Caroline Wright
Dr Anna Murray
Programme Director
Anna is an Associate Professor in Human Genetics. She is part of the 'Genetics of Complex Traits' research group and Programme Director of the Masters in Genomic Medicine. Her main research expertise is in the field of reproductive genetics and she has published on single gene mutations which cause premature ovarian failure and also genome-wide studies to detect novel loci involved in reproductive ageing.
Dr Caroline Wright
Caroline teaches on the core module Fundamentals in Human Genetics and Genomics. Her main research interests are in the clinical application of genome-wide sequencing technologies for the diagnosis of rare diseases.
She is also a visiting scientist at the Wellcome Sanger Institute in Cambridge, and is on the management committee for the UK Deciphering Developmental Disorders Study (www.ddduk.org).
Profile page
Pre-learning
Free online course: 'Genomic Medicine: Transforming Patient Care in Diabetes': This free online course will introduce the topic of genomics, using the University of Exeter’s research expertise in diabetes, to illustrate the clinical application of current genomics knowledge. Find out more
Before the start of your course please use this material as an introduction to some of the basic concepts in genomics. If there are gaps in your knowledge please use the learning resources provided below.
By the end of this pre-learning you should be able to:
- Describe how the genome is structured and organised; using terms such as DNA, nucleotide, gene and chromosome.
- Explain how the information encoded in DNA is decoded resulting in the production of proteins; using terms such as codon, exon, intron, mRNA, splicing, transcription, translation and tRNA.
- Explain how a genetic variant can result in an observable trait; using terms such as gene expression, genotype, mutation, phenotype and protein function.
- Use pedigree charts to deduce common modes of Mendelian inheritance; using terms such as allele, autosomal dominant, autosomal recessive, carrier, homozygote and X-linked.
- Appreciate that environmental factors affect gene expression. Terms to be understood here include epigenetics, histone and methylation.
- Understand that common diseases result from a complex interplay involving multiple genes and environmental factors. Terms to be understood here include polygenic and single nucleotide polymorphism (SNP).
Links and resources
All of these topics will be covered in more depth in the various modules, but you should have broad knowledge of the terms involved. To assist you in reaching these targets the following links and resources should be useful. Numbers in brackets refers to the intended learning outcome (numbered 1-6 above) that the resource will help you to understand.
- The Genomics Education Programme, set up by the NHS to educate its staff, provides brief courses (duration ~1.5 hours each) that will give you an overview of genomics from a clinical perspective.
- 100,000 Genomes Project: Preparing for the consent conversation
This course guides health professionals through the key steps of the Project's consent process, what to consider when preparing for the discussion with potential participants, and how to address their questions and concerns.
- Introduction to Genomics With new technologies we can now examine the whole of a person's DNA - their genome - quicker and cheaper than ever before. Learn about the fundamentals of genomics and discover its growing importance for healthcare (1, 3).
- Introduction to Bioinformatics. Discover how bioinformatics is becoming increasingly important to contemporary healthcare research and delivery. Learn about the principles and practices of bioinformatics, the challenges it faces and the problems it can help to solve.
- Not a short course but this resource, provided by the Genomics Education Programme, will help you to interpret pedigree charts. And the video entitled ‘An introduction to genetics pedigrees’ will orientate you regarding use of Roman numerals and numbers to identify individuals within and between generations (4).
- 23andme provide direct-to-consumer genome testing and provides a variety of educatory genetic resources. This series of short animations(<5 min/clip) answers the following questions:
- What are genes? (1)
- What are SNPs? (6)
- Where do your genes come from? (1)
- What are phenotypes? (3)
- yourgenome is produced by the Public Engagement team at the Wellcome Genome Campus near Cambridge. This website covers everything from basic biology to the complex ethical issues that arise from genome sequencing. Particular recommendations include:
- The animations 'From DNA to protein' and 'From DNA to protein (flash)' showing how information encoded in DNA results in the production of proteins (2).
- The animation describing how DNA is packaged (1).
- The page defining complex disease and single nucleotide polymorphisms (6).
- The page defining inheritance, genotype and phenotype (3).
- The glossary of commonly used words in genetics and genomics.
- The Genetic Science Learning Center at the University of Utah is an internationally-recognised education program that translates science and health for non-experts. Particular recommendations include:
- The animation defining the epigenome (5).
- The animation explaining sources of genetic variation and how these can affect protein levels/function (3).
- The DNA Learning Center is part of the world-renowned Cold Spring Harbor Laboratory which has been set up to educate students and non-experts as we enter an era where genetic information is available and plentiful. Particular recommendations include:
- The animation illustrating how much of the human genome codes for protein (1)
- The animation explaining how a single change in the DNA code can cause human disease (3).
- FutureLearn offers many Massive Online Open Courses (MOOCs) generated in partnership with UK universities. Free to sign up to and of particular relevance to this course are the following MOOCS:
- The Genomics Era: The Future of Genetics in Medicine (St George's, University of London)
- Particular recommendations include the animations describing patterns of autosomal dominant, autosomal recessive and X-linked inheritance in Week 2 (4).
- Genomic Medicine: Transforming Patient Care in Diabetes (University of Exeter)
- Particular recommendation is Prof Tim Frayling's discussion on ‘What genomics can teach us about polygenic diabetes’ in Week 2 (6).
- Inside Cancer: How Genes Influence Cancer Development (University of Bath) Particular recommendations include the section on ‘What is epigenetics and why is it important in cancer’ in Week 2 (5).
- Whole Genome Sequencing: Decoding the Language of Life and Health. Produced by Health Education England and draws on experience with the 100,000 Genomes Project.
To access the MOOCs you need to sign up with FutureLearn and join the courses when they open. Once the course is open, you can access all the material at any time, from that date. Once you register for the Genomic Medicine Programme at Exeter, we can register you on to the Exeter MOOC too, even if it is not currently running.
- New Clinical Genetics 3rd edition (Read & Donnai) is a recommended textbook. Using a case-based approach it makes understanding genetics an attractive and stimulating experience.
Chapters 1,2,3,6, 7 & 13 will help you in reaching the intended objectives (1-6) for this part of the course. There is also a good glossary at the back of the book. Of course there is a lot of detail in these chapters that will be covered during the course, so don't feel you have to read and understand everything!
For a 35% discount on the purchase price of this book go to Scion Publishing and search for New Clinical Genetics and add book to shopping basket. Enter code NCG35 when prompted. On the shipping options page select the first option (free UK shipping).
Read more
Careers
The course is especially designed for healthcare professionals working within the National Health Service, to improve their capabilities and support career progression. It could be similarly beneficial for those working or aspiring to work in other healthcare systems.
Students who are not healthcare professionals would acquire knowledge, understanding and skills that should help them gain employment or PhD positions especially in the expanding fields of genomics, bioinformatics, or other medically-related research and development in either academia, pharmaceutical or biotech industries.
Careers support
All University of Exeter students have access to Career Zone, which gives access to a wealth of business contacts, support and training as well as the opportunity to meet potential employers at our regular Careers Fairs