Skip to main content

Funding and scholarships for students

Award details

From Ultrastructure to Functionality: a New Paradigm on Cartilage Repair and Regeneration Strategy. EMPS College Home fees Studentship, PhD in Engineering Ref: 4318

About the award


Lead Supervisor:

Dr Junning Chen - College of Engineering, Mathematics and Physical Sciences, University of Exeter, Streatham Campus


Dr Ben Sherlock - College of Medicine and Health, University of Exeter.

Professor Daniel Aeschlimann - Director of Research, Professor of Biological Sciences, Cardiff University.



Department of Engineering University of Exeter, Streatham Campus, Exeter, Devon.

The University of Exeter’s College of Engineering, Mathematics and Physical Sciences  is inviting applications for a fully-funded PhD studentship to commence in January 2022 or as soon as possible thereafter. The studentship will cover Home tuition fees plus an annual tax-free stipend of at least £15,609 for 3.5 years full-time, or pro rata for part-time study. 

This College studentship is open to UK and Irish nationals, who if successful in their application will receive a full studentship including payment of university tuition fees at the home fees rate.

Project Description:

Cartilage mechanical properties are crucial to its functional roles in load-bearing and mobility and are often compromised by ageing and diseases. Osteoarthritis (OA) is the most prevalent form of cartilage degeneration, affecting nearly 9 million people in the UK and disease management accounts for the fourth largest NHS programme budget spend in England. Patients with OA are progressively deteriorating due to lack of a cure or even a recognized ‘disease modifying’ therapeutic. Currently, the only treatment for OA is the late-stage intervention with joint replacements. It is accepted that early intervention could slow down or prevent OA progression; however, chondral defects remain difficult, if not impossible, to detect before inducing progressive degenerative changes.

Several tissue-engineering techniques have been developed aiming to generate osteochondral implants to repair the defects, but most of them suffer from poor tissue formation and compromised integration with the remaining native tissues. There is an urgent need in developing a new technique capable of mimicking the multiscale heterogeneities in the native tissue structures on multiple length scales and providing a bioactive environment for cells hosted. The regenerated tissues should possess a similar extracellular matrix (ECM) structure to the healthy cartilage, in which a collagenous network should provide sufficient resistance to loading by interacting with interstitial fluid rich in proteoglycans, and importantly, harbour the correct progenitor cells that direct appropriate repair responses.

This project is to establish, evaluate and optimise a novel scaffold-free framework in cartilage repair in the context of ageing and OA. A novel proprietary human 3D cartilage model utilising chondrocyte progenitor cells isolated from mature human articular cartilage to reproducibly generate cartilage discs that display structural properties similar to human cartilage. Combining with our recent advances in polarisation-dependent second harmonic generation (pSHG) imaging, we are now able to examine the hierarchical complexities of collagen fibril organisation at a few hundred nanometres and intrafibrillar organisation at the molecular scale. The combination of culturing and imaging techniques allows designing and optimising micro- and ultrastructural parameters of the repaired and regenerated cartilage, to provide desired biomechanical functions. The outcomes of this project will also allow the regenerated tissues to mimic the nanostructure and functionality of the nature cartilage as a biomimetic template, and the outcome will provide an assessment of its potential in clinical applications.

This studentship offers a fantastic opportunity for a highly motivated individual to join a growing, interdisciplinary team of scientists in tissue engineering, biophysical optics, and computational simulation as well as clinicians working on a broad range of tissue biomechanics-centred research within Exeter. The successful applicant will be fully supported to develop both experimental and computational skills, whilst focussing on clinically relevant questions which will impact the millions of lives suffering from cartilage disorders and degeneration. Developing these multi-disciplinary skills will allow the student to acquire a unique set of expertise in exploring frontier science and to ensure the delivery of clinical impact, acting as a springboard for a successful career in MSK and OA research.


Entry requirements

This studentship is open to UK and Irish nationals, who if successful in their application will receive a full studentship including payment of university tuition fees at the home fees rate.

Applicants for this studentship are expected to have a 1st class undergraduate degree or a Master degree with merit in biomedical engineering or medical physics. 

If English is not your first language you will need to have achieved at least 6.0 in IELTS and no less than 6.0 in any section by the start of the project. 

Alternative tests may be acceptable (see

How to apply

In the application process you will be asked to upload several documents.  Please note our preferred format is PDF, each file named with your surname and the name of the document, eg. “Smith – CV.pdf”, “Smith – Cover Letter.pdf”, “Smith – Transcript.pdf”.

• CV
• Letter of application (outlining your academic interests, prior project work experience and reasons for
  wishing to undertake the project).
• Transcript(s) giving full details of subjects studied and grades/marks obtained (this should be an
   interim transcript if you are still studying)
• Two references from referees familiar with your academic work. If your referees prefer, they can email
   the reference direct to quoting the studentship reference number.
• If you are not a national of a majority English-speaking country you will need to submit evidence of your proficiency in English.  Please see the entry requirements information above.

The closing date for applications is midnight on 10th January 2022. Interviews will be held online on the week commencing 24th January 2022.

If you have any general enquiries about the application process please email

Project-specific queries should be directed to the main supervisor at


Application deadline:10th January 2022
Value:Home tuition fees plus an annual tax-free stipend of at least £15,609 for 3.5 years full-time, or pro rata for part-time study.
Duration of award:per year
Contact: PGR Admissions Office