Skip to main content

Study information

HR Analytics

Module titleHR Analytics
Module codeBEMM395
Academic year2025/6
Credits15
Module staff

Mrs Fiona Smith (Convenor)

Duration: Term123
Duration: Weeks

11

Number students taking module (anticipated)

100

Module description

This module investigates opportunities for HR functions to improve strategic decision making by transforming data into information and insights, bringing analytical rigour to HRM and ultimately enabling organisations to make more informed decisions and gain competitive advantage.  The emergence of cloud-based data storage, data warehouses, AI and machine learning, alongside reduced data storage costs, means organisations have access to large pools of data, including employee specific data, plus technology capable of interpreting and analysing large data sets.  Students will briefly consider historical HRM metrics, then consider implementation of HR analytics using a variety of contemporary HR analytics models and academic frameworks, gaining understanding of key data-related terminology and processes, using example data sets to develop understanding of the HR analytics process using statistical models, design thinking and root-cause analysis.  Students will make connections between core HRM activities, HR analytics insights and strategic goals.

Drawing from a variety of disciplines including psychology, management, information technology, economics, law and education, the module calls upon examples from a wide range of business scenarios, including consideration of ethics, governance and Corporate Social Responsibility (CSR).  This module will provide you with an opportunity to learn the theoretical potential of HR analytics, and appreciate the practical hurdles required to successfully implement theory to practice, based upon organisational and HRM context, using case study examples from a variety of organisational scenarios.  This module reflects the increasingly inter-disciplinary nature of research and employment and is suitable for students from interdisciplinary pathways.

Module aims - intentions of the module

Understanding how HR analytics is a core element of organisational strategy is at the heart of the module, and this module aims to equip students with the foundation knowledge and skills to critically interpret, evaluate and select HR analytics methods and models to introduce HR analytics to the HRM function, By taking an interdisciplinary approach, the module will expose students to a variety of models, core principles and ways of working to enable students to demonstrate contextual awareness of both organisational and wider external factors.  As a result, the module provides students with core HR analytics employability skills and knowledge.

Intended Learning Outcomes (ILOs)

ILO: Module-specific skills

On successfully completing the module you will be able to...

  • 1. Identify and apply appropriate HR analytics theories, methods and tools to demonstrate a strong understanding of HR analytics
  • 2. Explain and interpret contemporary issues regarding HR analytics and use of data – including ethics, governance and change management,

ILO: Discipline-specific skills

On successfully completing the module you will be able to...

  • 3. Critically evaluate the impact of HR analytics on businesses and individuals
  • 4. Discuss how to develop HR Analytics capability within organisations

ILO: Personal and key skills

On successfully completing the module you will be able to...

  • 5. Develop HR analytics skills including ability to apply a variety of statistical models

Syllabus plan

Core themes considered in the module will include:

  • Introduction to HR analytics
  • HR analytics as a strategic enabler
  • Organisational context for successful HR analytics:  AI, machine learning, data mining, psychometric testing
  • The language of HR analytics, models, frameworks, statistics, data & insights
  • Problem identification, predictive analytics, prescriptive analytics
  • The future of HR analytics

Learning activities and teaching methods (given in hours of study time)

Scheduled Learning and Teaching ActivitiesGuided independent studyPlacement / study abroad
181320

Details of learning activities and teaching methods

CategoryHours of study timeDescription
Scheduled learning and teaching activities1010 x 1 hour whole cohort session
Scheduled learning and teaching activities84 x 2 hour seminar session
Guided Independent Study66Core and supplementary reading
Guided Independent Study66Assignment preparation

Formative assessment

Form of assessmentSize of the assessment (eg length / duration)ILOs assessedFeedback method
Seminar exercisesVia 4 x 2 hour seminars1-5Group verbal/written feedback

Summative assessment (% of credit)

CourseworkWritten examsPractical exams
10000

Details of summative assessment

Form of assessment% of creditSize of the assessment (eg length / duration)ILOs assessedFeedback method
Individual essay301000 words1-3Written
Individual report702500 words1-5Written

Details of re-assessment (where required by referral or deferral)

Original form of assessmentForm of re-assessmentILOs re-assessedTimescale for re-assessment
Individual essayIndividual essay (1000 words, 30%)1-3Referral/deferral period
Individual reportIndividual report (2500 words, 70%)1-5Referral/deferral period

Re-assessment notes

Deferral – if you miss an assessment for certificated reasons judged acceptable by the Mitigation Committee, you will normally be either deferred in the assessment or an extension may be granted. The mark given for a re-assessment taken as a result of deferral will not be capped and will be treated as it would be if it were your first attempt at the assessment.

Referral – if you have failed the module overall (i.e. a final overall module mark of less than 50%) you will be required to submit a further assessment as necessary. If you are successful on referral, your overall module mark will be capped at 50%.

Indicative learning resources - Basic reading

No single textbook is used throughout this module.  Example data sets and case studies are drawn from the following two books, both are available online via the library, and further guided reading will be provided in advance of lecture via the ELE pages.  Indicative recommended reading will include:

For case studies:

 

Indicative learning resources - Web based and electronic resources

Online learning:

  • ELE

References include:

Key words search

Human Resource Management, HR Analytics, People Analytics

Credit value15
Module ECTS

7.5

Module pre-requisites

This module is restricted to HRM Masters students only in the first year of delivery. To be reviewed after the first year.

Module co-requisites

None.

NQF level (module)

7

Available as distance learning?

No

Origin date

09/05/2022

Last revision date

18/03/2025