Study information

# Control Engineering for Renewable Energy - 2023 entry

MODULE TITLE CREDIT VALUE Control Engineering for Renewable Energy 15 ENEM008 Prof Mohammad Abusara (Coordinator)
DURATION: TERM 1 2 3
DURATION: WEEKS 10
 Number of Students Taking Module (anticipated) 9
DESCRIPTION - summary of the module content
This module has been designed to develop your knowledge in control engineering with particular emphasis on its application for renewable energy and its integration including power electronic converters,  PV, wind turbines,wave energy converters and electric vehicles

Prerequisite module: ENE3002 or equivalent

AIMS - intentions of the module

On this module, you will develop understanding of linear control engineering through developing competence with analytical and computational design tools that are routinely adopted in industry, for design tasks.

INTENDED LEARNING OUTCOMES (ILOs) (see assessment section below for how ILOs will be assessed)

On successful completion of this module you should be able to:

Module Specific Skills and Knowledge

1. Understand the basics of closed loop control systems
2. Derive differential equations to model the dynamics of simple systems
3. Understand state space modelling
4. Use Laplace Transforms to derive transfer functions
5. Compute Inverse Laplace Transforms and derive the time-domain solutions
6. Use block diagrams to represent dynamic systems and their controllers
7. Perform system analysis using the Laplace-domain
8. Implement control strategies for single-input-single-output linear system
9. Use Bode Diagrams and Root Locus analytical tools
10. Design linear control systems

Discipline Specific Skills and Knowledge

11. Develop practical understanding of modelling, design, and deployment of control systems for renewable energy resources
12. Take system approach to engineering problems

Personal and Key Transferable / Employment Skills and Knowledge

13. Use computational tools (Matlab/Simulink) for system analysis and control design
14. Apply analytical and computational tools for control of different applications: power electronics converters, wind turbines, PV, and wave energy converters

SYLLABUS PLAN - summary of the structure and academic content of the module
Part 1 – Theoretical Background:

- Introduction to control engineering;
- Open loop versus closed loop control;
- Proportional, Integral and Derivative (PID) control;
- Mathematical modelling of dynamic systems;
- Solving differential equations
- Laplace Transform
- Solving differential equations using Laplace Transform
- Block diagram and reduction rules
- Performance criteria of dynamic systems
- Routh-Hurwitz Stability Criterion
- Step response of second order system
- Root locus
- Control Design using Root Locus
- Bode diagram and Nyquist stability criterion

Part 2 – Applications for Renewable Energy

- Modelling and Control of DC/DC converters for battery storage and PV;
- Modelling and Control of Wind Turbines;
- Modelling and Control of Wave Energy Converters;
- Powertrain for electric vehicles;

LEARNING AND TEACHING
LEARNING ACTIVITIES AND TEACHING METHODS (given in hours of study time)
 Scheduled Learning & Teaching Activities Guided Independent Study 40 110
DETAILS OF LEARNING ACTIVITIES AND TEACHING METHODS
 Category Hours of study time Description Scheduled learning & teaching activities 30 Lectures with integrated tutorials, In-class lectures Scheduled learning & teaching activities 10 Software tutorials, Instructional classes on use of software Guided independent study 110 Private Study

ASSESSMENT
FORMATIVE ASSESSMENT - for feedback and development purposes; does not count towards module grade
Form of Assessment Size of Assessment (e.g. duration/length) ILOs Assessed Feedback Method
Not applicable

SUMMATIVE ASSESSMENT (% of credit)
 Coursework Written Exams 100 0
DETAILS OF SUMMATIVE ASSESSMENT
Form of Assessment % of Credit Size of Assessment (e.g. duration/length) ILOs Assessed Feedback Method
In-class Test 50 1.5 hours 1-10 Assignment feedback
Matlab/Simulink based coursework on control design 50 20 pages @ 150 words / page ( equivalent to 3,000 words) 11-14 Assignment feedback

DETAILS OF RE-ASSESSMENT (where required by referral or deferral)
Original Form of Assessment Form of Re-assessment ILOs Re-assessed Time Scale for Re-assessment
Summative assessment Additional summative assignment Weighting as above August Ref/Def period

RE-ASSESSMENT NOTES
If a student is referred or deferred, the failed / non-completed component(s) will be re-assessed at the same weighting as the original assessment.
RESOURCES
INDICATIVE LEARNING RESOURCES - The following list is offered as an indication of the type & level of
information that you are expected to consult. Further guidance will be provided by the Module Convener

ELE – http://vle.exeter.ac.uk/

Web based and electronic resources:

Other resources:

MATLAB Software
ETAP Software