University of Exeter funding: RF and mm-wave imaging

CDT in Metamaterials: RF and mm-wave imaging using optical modulation Ref: 3448

About the award

Statement of Research

Joint supervisors: Prof Euan Hendry, Prof Nick Stone

External partner: QinetiQ (Prof Chris Lawrence)

Radiation in the mm-wave band is intrinsically safe, non-ionising and non-destructive. These frequencies also correspond to a “sweet spot” in the electromagnetic spectrum, where radiation can pass unimpeded through fatty tissues that normally scatter or absorb infrared and visible radiation, while giving rise to useful contrast in protein rich tissues for cancer imaging. This contrast arises primarily from the differing water content in tissues, allowing one to effectively image the water rich tumour tissue through the normally opaque, surrounding fatty tissue. The problem with standard implementations of RF and mm-wave imaging is depth determination - how does one determine the depth of healthy tissue across the entire surface of a tumour?

In this project we will develop a new strategy to this well known problem using frequencies in the range 10 to 50 GHz. Combining this with Exeter developed techniques for near field modulation and image acquisition [1-4], we will be able to image water contrast at differing depths within tissues. We will first optimise the technique, tuning the imaging depth of view to match current guidelines for breast cancer margins, before testing our imaging approach by measuring excised breast samples in the operating theatre unit at the Royal Devon and Exeter Hospital, using histopathology and deep Raman measurements for comparison at known locations. Once fully designed and optimised, we believe that this approach could reduce the occurrence of second surgeries, cancer reoccurrence and metastasis.

[1] R.I.Stantchev et al, Science Adv. 2, 1600190 (2016)
[2] S.M. Hornett et al, Nano Lett. 16, 7019 (2017)
[3] R.I.Stantchev et al, Optica 4,989 (2017)
[4] R.I.Stantchev et al, Scientific Rep. 8, 6924 (2018)

The studentship is part of the UK’s Centre of Doctoral Training in Metamaterials (XM2) based in the Departments of Physics and Engineering on the Streatham Campus in Exeter.  Our aim is to undertake world-leading research, while training scientists and engineers with the relevant research skills and knowledge, and professional attributes for industry and academia.

The 4 year studentship (value approx. £105,000, subject to funding) is externally funded by an industry partner. It is of value around £105,000, which includes £13,000 towards the research project (travel, consumables, equipment etc.), tuition fees, and an annual, tax-free stipend of approximately £16,500 per year for UK students.

Eligible candidates: UK nationals only due to industry sponsor requirements.

Exeter has a well-established and strong track record of relevant research, and prospective students can consider projects from a wide variety of fields:

  • Acoustic and Fluid-dynamical Metamaterials
  • Biological and Bio-inspired Metamaterials
  • Graphene and other 2D Materials, and related Devices
  • Magnonics, Spintronics and Magnetic Metamaterials
  • Microwave Metamaterials
  • Nanomaterials and Nanocomposites
  • Optical, Infra-red and THz Photonics and Plasmonics
  • Quantum Metamaterials
  • Wave Theory and Spatial Transformations

Please visit www.exeter.ac.uk/metamaterials to learn more about our centre and see the full list of projects that we have on offer this year.

International students are welcome to apply: fees and project costs will be paid, but the stipend can only be provided in exceptional circumstances.  We encourage international scholarship applicants or recipients to contact us directly prior to making their application (metamaterials@exeter.ac.uk).

About XM2

Metamaterials are fabricated microstructures having properties beyond those found in nature. They are an important new class of electromagnetic and acoustic materials with applications in many technology areas: energy storage and improved efficiency, imaging, communications, sensing and the much-hyped ‘cloaking’. Since 2014, the Centre for Doctoral Training in Metamaterials (XM2) recruited more than 80 PhD students. Learn more about our science and training approach: www.exeter.ac.uk/metamaterials.

The first year of the studentship includes an assessed, stand alone project, and a substantial programme of training. Students will choose from a wide range of taught modules, and participate in academic and personal development skills-based workshops, together with creativity events and conference-style meetings. The cohort will also be expected to disseminate their results to the international community via high-impact publications and international conferences. They will spend time working with our academic and industrial partners.  Full details of the programme are available here.

The University of Exeter combines world class research with excellent student satisfaction. It is a member of the Russell Group of leading research-intensive universities. Formed in 1955, the University has over 20,000 students from more than 130 different countries. Its success is built on a strong partnership with its students and a clear focus on high performance. Recent breakthroughs to come out of Exeter's research include the identification and treatment of new forms of diabetes and the creation of the world's most transparent, lightweight and flexible conductor of electricity. Exeter is ranked amongst the UK’s top 10 universities in the Higher Education league tables produced by the Times and the Sunday Times. It is also ranked amongst the world’s top 200 universities in the QS and Times Higher Education rankings.

How to apply

Application criteria

Eligible applicants: UK nationals only.

During the application process you will need to upload the documents listed below. Please prepare these before starting the application process.

  • Degree transcript(s) giving information about the qualification awarded, the modules taken during the study period, and the marks for each module taken.
  •  An academic CV;
  •  A cover letter outlining your research interests in general, the title of the project you are applying for;
    • Describe a) why you would like to study for a PhD, b) why you would like to focus on this particular topic, c) any relevant expertise and d) your future career ambitions;
    • Describe the qualities that you believe will make you a great researcher (in particular as part of a team).

You will be asked to provide the contact details of two academic referees.

* We foster creativity and utilisation of individual strengths. Applicants are encouraged to provide evidence to support their statements. This might include conventional written documents (e.g. examples of work), but we also encourage alternatives such as audio or video recordings, websites, programming etc. Please ensure to include accessible links to such files in an appropriately named document as part of the upload process.

Application procedure

Shortlisting

Applications will normally be reviewed within two weeks of receipt.

Candidates will be short-listed against a set of agreed criteria to ensure quality while maintaining diversity. Failure to include all the elements listed above may result in rejection.

The essential criteria:

  • Undergraduate degree in a relevant discipline;
  • Vision and motivation (for research & professional development);
  • Evidence of the ability to work collaboratively and to engage in a diverse community;
  • Evidence of excellent written and oral skills in English.

The highest quality candidates will also be able to demonstrate one of more of the following:

  • Specialist knowledge about one or more of the 8 research areas listed above;
  • Training in research methodology (e.g. undergraduate research projects);
  • Research outputs (e.g. papers) and/or other indicators of academic excellence (e.g. awards).

Interviews

Shortlisted candidates will be invited to an entry interview to assess fit to the CDT concept. This will be held prior the academic interview with the supervisors and will normally be undertaken by a panel of 3 people, including a current postgraduate researcher or post-doc in Physics or Engineering.

Please email metamaterials@exeter.ac.uk if you have any queries about this process.

Summary

Application deadline:31st December 2019
Number of awards:1
Value:Approximately £105,000, including research and travel budget, tuition fees and annual taxfree stipend (approx. £16,500 per year payable to UK students only). Subject to funding.
Duration of award:per year
Contact: Dr. Isaac Luxmoore (Admissions Tutor) metamaterials@exeter.ac.uk