University of Exeter funding: Coupling of electrokinetics with in

Coupling of electrokinetics with in situ leach mining for next generation “key-hole” mining of metals from ores and wastes, [Mining and Minerals Engineering] – PhD (Funded) Ref: 3866

About the award


Main supervisor
Dr Rich Crane, Camborne School of Mines & Environment and Sustainability Institute, University of Exeter. 


About the Award

The University of Exeter’s College of Engineering, Mathematics and Physical Sciences is inviting applications for a fully-funded PhD studentship to commence in September 2020 or as soon as possible thereafter. For eligible students the studentship will cover UK/EU tuition fees plus an annual tax-free stipend of at least £15,009 for 3.5 years full-time, or pro rata for part-time study. The student would be based in the Camborne School of Mines in the College of Engineering, Mathematics and Physical Sciences at the Penryn Campus in Cornwall.

Location: Camborne School of Mines & Environment and Sustainability Institute, Penryn Campus, Cornwall


Project Description:

The Problem:

Last year more than 99% of the mass of all metals were extracted from the Earth via physical excavation which comprises the complete removal of surface soil and overburden rock (and associated biological inhabitants), in order to gain access to the ore. The ore is then typically crushed to a fine powder before being processed (e.g. via smelting) to remove the gangue material (often >90% by volume) and thereby yield the final pure metal product. Overall the process results in staggeringly large quantities of solid waste (approximately 20 times larger than all global municipal waste generation) whilst also being responsible for 26% of all global CO2 emissions. It is therefore clear that current mining paradigm is fundamentally unsustainable.

The Solution:

This PhD project will seek to deliver a new technology for the mining and waste reprocessing industries which will enable the recovery of metals from ores and legacy waste with radically less environmental disturbance, mine waste generation and energy input. In particular the research will focus on developing a mechanistic understanding of how we can combine in situ leach mining with electrokinetics and other hybrid approaches (ultrasonication, microwave activity, etc.) in order to: (1) precisely control the subsurface movement of a leaching chemical; and (2) “force” it through low hydraulic conductivity geological formations.

The specific aims of project are to:

(1) Collect and characterise ore and mine waste from across the UK which span a range of different mineralogy potentially applicable for electrokinetic in situ leach mining.
(2) Determine how we can synthesise, and optimise the application of, next generation lixiviants which are selective for target metal dissolution from ores and mine waste.
(3) Determine what electrokinetic conditions are best suited to control both lixiviant leaching efficacy and transport through porous systems.
(4) Determine what hybrid techniques may be applicable to enhance the approach even further.

This exciting project will benefit from the world-class facilities at the Camborne School of Mines & the Environment and Sustainability Institute, University of Exeter and will also comprise fieldwork at several interesting legacy mine sites in the SW of England.

The studentship will be awarded on the basis of merit for 3.5 years of full-time study to commence in September 2020.

Figure 1 LHS Simplified schematic diagram of the theory behind electromigration of a lixiviant RHS an example of legacy mine site where EKISL could potentially be applied in the future

Figure 1. LHS: Simplified schematic diagram of the theory behind electromigration of a lixiviant. RHS: an example of legacy mine site where EK-ISL could potentially be applied in the future.

Entry requirements

Applicants for this studentship must have obtained, or be about to obtain, a First or Upper Second Class UK Honours degree, or the equivalent qualifications gained outside the UK, in an appropriate area of science or technology. 
If English is not your first language you will need to have achieved at least 6.0 in IELTS and no less than 6.0 in any section by the start of the project.  Alternative tests may be acceptable (see

How to apply

In the application process you will be asked to upload several documents.  Please note our preferred format is PDF, each file named with your surname and the name of the document, eg. “Smith – CV.pdf”, “Smith – Cover Letter.pdf”, “Smith – Transcript.pdf”. 
• CV
• Letter of application (outlining your academic interests, prior research experience and reasons for wishing to undertake the project).
• Transcript(s) giving full details of subjects studied and grades/marks obtained (this should be an interim transcript if you are still studying)
• Two references from referees familiar with your academic work. If your referees prefer, they can email the reference direct to quoting the studentship reference number 3866.
• If you are not a national of a majority English-speaking country you will need to submit evidence of your proficiency in English

The closing date for applications is midnight on 28 March 2020 (UK time).  Interviews will be held in the week commencing 4 May 2020.

If you have any general enquiries about the application process please email  or phone +44 (0)1392 725150 or +44 (0)1392 725801.  Project-specific queries should be directed to the main supervisor, Dr Richard Crane (


Application deadline:28th March 2020
Duration of award:per year
Contact: STEMM PGR Admissions