Publications by year
In Press
Sheppard EC, Rogers S, Harmer NJ, Chahwan R (In Press). A universal fluorescence-based toolkit for real-time quantification of DNA and RNA nuclease activity.
Abstract:
A universal fluorescence-based toolkit for real-time quantification of DNA and RNA nuclease activity
AbstractDNA and RNA nucleases play a critical role in a growing number of cellular processes ranging from DNA repair to immune surveillance. Nevertheless, many nucleases have unknown or poorly characterized activities. Elucidating nuclease substrate specificities and co-factors can support a more definitive understanding of cellular mechanisms in physiology and disease. Using fluorescence-based methods, we present a quick, safe, cost-effective, and real-time versatile nuclease assay, which uniquely studies nuclease enzyme kinetics. In conjunction with a substrate library we can now analyse nuclease catalytic rates, directionality, and substrate preferences. The assay is sensitive enough to detect kinetics of repair enzymes when confronted with DNA mismatches or DNA methylation sites. We have also extended our analysis to study the kinetics of human single-strand DNA nuclease TREX2, DNA polymerases, RNA, and RNA:DNA nucleases. These nucleases are involved in DNA repair, immune regulation, and have been associated with various diseases, including cancer and immune disorders.
Abstract.
Xu Y, Smith R, Vivoli M, Ema M, Goos N, Gehrke S, Harmer NJ, Wagner GK (In Press). Covalent inhibitors of LgtC: a blueprint for the discovery of non-substrate-like inhibitors for bacterial glycosyltransferases. Bioorganic & Medicinal Chemistry
Barker S, Harding SV, Gray D, Richards MI, Atkins HS, Harmer N (In Press). Drug screening to identify compounds to act as co-therapies for the treatment of pathogenic <i>Burkholderia</i>.
Abstract:
Drug screening to identify compounds to act as co-therapies for the treatment of pathogenic Burkholderia
AbstractBurkholderia pseudomallei is a soil-dwelling organism present throughout the tropics, and is the causative agent of melioidosis, a disease that is believed to kill 89,000 people per year. It is naturally resistant to most currently available antibiotics. The most efficacious treatment for melioidosis requires at least two weeks of intravenous treatment with ceftazidime or meropenem. This places a large treatment burden on the predominantly middle income nations where the majority of disease occurs. We have established a high-throughput assay for compounds that could be used as a co-therapy to potentiate the effect of ceftazidime, using the related non-pathogenic bacterium Burkholderia thailandensis as a surrogate. Optimization of the assay gave a Z’ factor of 0.68. We screened a library of 61,250 compounds, and identified 29 compounds with a pIC50 (-log10(IC50)) greater than five. Detailed investigation allowed us to down select to six “best in class” compounds, which included the licensed drug chloroxine. Co-treatment of B. thailandensis with ceftazidime and chloroxine reduced culturable cell numbers by two orders of magnitude over 48 hours compared to treatment with ceftazidime alone. Hit expansion around chloroxine was performed using commercially available compounds. Minor modifications to the structure abolished activity, suggesting that chloroxine likely acts against a specific target. Finally, preliminary data also demonstrates the utility of chloroxine to act as a co-therapy to potentiate the effect of ceftazidime against B. pseudomallei. This approach successfully identified potential co-therapies for a recalcitrant Gram-negative bacterial species. Our assay could be used more widely to aid in chemotherapy against these bacteria.
Abstract.
Cross AR, Roy S, Vega MV, Rejzek M, Nepogodiev SA, Cliff M, Salmon D, Isupov MN, Field RA, Prior JL, et al (In Press). Spinning sugars in antigen biosynthesis: a direct study of the <i>Coxiella burnetii</i> and <i>Streptomyces griseus</i> TDP-sugar epimerases.
Abstract:
Spinning sugars in antigen biosynthesis: a direct study of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases
AbstractThe sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii respectively. Streptose forms the central moiety of the antibiotic streptomycin, whilst DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalysed by the enzymes RmlA/RmlB/RmlC/RmlD. Streptose and DHHS biosynthesis unusually require a ring contraction step that might be performed by the orthologues of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii proposed the StrM and CBU1838 proteins respectively as RmlC orthologues. Here, we demonstrate through both coupled and direct observation studies that both enzymes can perform the RmlC 3’’,5’’ double epimerisation activity; and that this activity supports TDP-rhamnose biosynthesis in vivo. We demonstrate that proton exchange is faster at the 3’’ position than the 5’’ position, in contrast to a previously studied orthologue. We solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to previously characterised enzymes. These results further support the hypothesis that streptose and DHHS are biosynthesised using the TDP pathway and are consistent with the ring contraction step being performed on a double epimerised substrate, most likely by the RmlD paralogue. This work will support the determination of the full pathways for streptose and DHHS biosynthesis.
Abstract.
Roy S, Vega MV, Ames JR, Britten N, Kent A, Evans K, Isupov MN, Harmer NJ (In Press). Structure and function of <i>N</i>-acetylglucosamine kinase illuminates the catalytic mechanism of ROK kinases.
Abstract:
Structure and function of N-acetylglucosamine kinase illuminates the catalytic mechanism of ROK kinases
AbstractN-acetyl-D-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolise environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase NagK performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analogue AMP-PNP. Surprisingly, PsNagK showed two conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Molecular dynamics modelling of catalytic ion binding confirmed the location of the essential catalytic metal. Site-directed mutagenesis confirmed the catalytic base, and that the metal coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.
Abstract.
Thomas A, Evans BD, van der Giezen M, Harmer NJ (In Press). Survivor bias drives overestimation of stability in reconstructed ancestral proteins.
Abstract:
Survivor bias drives overestimation of stability in reconstructed ancestral proteins
AbstractAncestral sequence reconstruction has been broadly employed over the past two decades to probe the evolutionary history of life. Many ancestral sequences are thermostable, supporting the “hot-start” hypothesis for life’s origin. Recent studies have observed thermostable ancient proteins that evolved in moderate temperatures. These effects were ascribed to “consensus bias”. Here, we propose that “survivor bias” provides a complementary rationalisation for ancestral protein stability in alignment-based methods. As thermodynamically unstable proteins will be selected against, ancestral or consensus sequences derived from extant sequences are selected from a dataset biased towards the more stabilising amino acids in each position. We thoroughly explore the presence of survivor bias using a highly parameterizablein silicomodel of protein evolution that tracks stability at the population, protein, and amino acid levels. We show that ancestors and consensus sequences derived from populations evolved under selective pressure for stability throughout their history are significantly biased toward thermostability. Our work proposes a complementary explanation of the origin of thermostability in the burgeoning engineering tools of ancestral sequence reconstruction and consensuses. It provides guidance for the thorough derivation of conclusions from future ancestral sequence reconstruction work.
Abstract.
2023
Scheuplein NJ, Lohr T, Vivoli Vega M, Ankrett D, Seufert F, Kirchner L, Harmer NJ, Holzgrabe U (2023). Fluorescent probe for the identification of potent inhibitors of the macrophage infectivity potentiator (Mip) protein of Burkholderia pseudomallei. SLAS Discovery
Cross A, Roy S, Vivoli Vega M, Rejzek M, Nepogodiev S, Cliff M, Salmon D, Isupov M, Field R, Prior J, et al (2023). Spinning sugars in antigen biosynthesis: a direct study of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases - dataset.
Seetaloo N (2023). Synuclein plasticity: the Achilles’ heel of nerve function linked to the onset of Parkinson’s disease.
Abstract:
Synuclein plasticity: the Achilles’ heel of nerve function linked to the onset of Parkinson’s disease
Lewy bodies – the hallmarks of Parkinson’s disease – are majorly constituted of aggregates of the presynaptic protein alpha-synuclein. The molecular mechanism of alpha-synuclein aggregation through which it changes dramatically from a soluble disordered monomer to insoluble structured fibrils remains unknown. As an intrinsically disordered protein, alpha-synuclein does not have a specific three-dimensional structure, but rather behaves mostly as a meta-stable ensemble of highly dynamic conformers, and as such undergoes rapid kinetics, making it almost impossible to measure its conformational changes with most techniques. Millisecond amide hydrogen exchange can provide valuable insights on the dynamic behaviour of proteins, especially at flexible regions. Thus, the work in this thesis reports on the development of methods and tools for hydrogen/deuterium-exchange mass spectrometry (HDX-MS) and the application of these for the study of aSyn under physiological conditions. In the first part of this thesis, high resolution on the alpha-synuclein monomer was achieved over two dimensions: time and space. Using a novel in-house rapid- mixing quench-flow instrument, hydrogen/deuterium-exchange mass spectrometry data on alpha-synuclein on the millisecond timescale was attained. Furthermore, using a ‘soft’ gas-phase mass spectrometry fragmentation technique called Electron Transfer Dissociation, structural resolution in the protein increased. The second part of this work focuses on the development of a software, HDfleX, in an effort to primarily automate the HDX-MS workflow and allow the merging of HDX-MS data at different levels: bottom-up, middle-down and top-down. The rest of the thesis uses the tools and methods developed earlier on to explore the effects of different solution conditions (cellular compartments and salt cations) on the monomeric conformations of aSyn, and how these correlate to the different stages of aggregation and the ensuing fibril polymorphs. Altogether, the achievements in this work will allow us to better understand the plasticity of the alpha-synuclein monomer as it cycles through different local environments.
Abstract.
Roy S, Vivoli Vega M, Ames JR, Britten N, Kent A, Evans K, Isupov MN, Harmer NJ (2023). The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding. Journal of Biological Chemistry, 299(4), 103033-103033.
2022
Iwasaki J, Lorimer DD, Vivoli-Vega M, Kibble EA, Peacock CS, Abendroth J, Mayclin SJ, Dranow DM, Pierce PG, Fox D, et al (2022). Broad-spectrum in vitro activity of macrophage infectivity potentiator inhibitors against Gram-negative bacteria and Leishmania major.
J Antimicrob Chemother,
77(6), 1625-1634.
Abstract:
Broad-spectrum in vitro activity of macrophage infectivity potentiator inhibitors against Gram-negative bacteria and Leishmania major.
BACKGROUND: the macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: in this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.
Abstract.
Author URL.
Louis M, Clamens T, Tahrioui A, Desriac F, Rodrigues S, Rosay T, Harmer N, Diaz S, Barreau M, Racine P-J, et al (2022). Pseudomonas aeruginosa Biofilm Dispersion by the Human Atrial Natriuretic Peptide.
Adv Sci (Weinh),
9(7).
Abstract:
Pseudomonas aeruginosa Biofilm Dispersion by the Human Atrial Natriuretic Peptide.
Pseudomonas aeruginosa biofilms cause chronic, antibiotic tolerant infections in wounds and lungs. Numerous recent studies demonstrate that bacteria can detect human communication compounds through specific sensor/receptor tools that modulate bacterial physiology. Consequently, interfering with these mechanisms offers an exciting opportunity to directly affect the infection process. It is shown that the human hormone Atrial Natriuretic Peptide (hANP) both prevents the formation of P. aeruginosa biofilms and strongly disperses established P. aeruginosa biofilms. This hANP action is dose-dependent with a strong effect at low nanomolar concentrations and takes effect in 30-120 min. Furthermore, although hANP has no antimicrobial effect, it acts as an antibiotic adjuvant. hANP enhances the antibiofilm action of antibiotics with diverse modes of action, allowing almost full biofilm eradication. The hANP effect requires the presence of the P. aeruginosa sensor AmiC and the AmiR antiterminator regulator, indicating a specific mode of action. These data establish the activation of the ami pathway as a potential mechanism for P. aeruginosa biofilm dispersion. hANP appears to be devoid of toxicity, does not enhance bacterial pathogenicity, and acts synergistically with antibiotics. These data show that hANP is a promising powerful antibiofilm weapon against established P. aeruginosa biofilms in chronic infections.
Abstract.
Author URL.
Cross AR, Roy S, Vivoli Vega M, Rejzek M, Nepogodiev SA, Cliff M, Salmon D, Isupov MN, Field RA, Prior JL, et al (2022). Spinning sugars in antigen biosynthesis: characterization of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases.
J Biol Chem,
298(5).
Abstract:
Spinning sugars in antigen biosynthesis: characterization of the Coxiella burnetii and Streptomyces griseus TDP-sugar epimerases.
The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, while DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologs of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologs in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3'',5'' double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3''-position than the 5''-position, in contrast to a previously studied ortholog. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralog most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.
Abstract.
Author URL.
Cutlan R (2022). Synthetic Biology for Green Chemistry: Building in Vivo Enzymatic Cascades Using Carboxylic Acid Reductases (CARs).
Abstract:
Synthetic Biology for Green Chemistry: Building in Vivo Enzymatic Cascades Using Carboxylic Acid Reductases (CARs)
Biocatalysis has a proven track record of offering replacements for individual chemical reactions with a lower environmental impact. Cascade reactions are an extension of biocatalysis; coupling a series of reactions to provide replacement for more than one chemical step. Herein, this thesis describes the engineering of a multi-enzyme cascade reaction for the production of phenylacetylcarbinol (PAC). Using a carboxylic acid reductase (CAR) from Mycobacterium phlei and a pyruvate decarboxylase from Acetobacter pasteurianus this thesis demonstrated a biocatalytic cascade reaction in which benzoic acid and pyruvate are converted into PAC. This cascade was combined with several other enzymes to recycle spent cofactors and deplete inhibitor by-products.
Furthermore, this thesis has highlighted the discovery of five putative enzymes; three ancestral CARs (AncCARs) and two thiamine diphosphate (ThDP) dependent enzymes. CARs typically have poor stability and thus limited tractability in industrial reactions. Within this study ancestral sequence reconstruction was performed on type I CARs. This is a developing engineering tool that can identify stabilizing and enzymatically neutral mutations throughout a protein. A combined algorithm approach was used to reconstruct functional ancestors of the Mycobacterial and Nocardial Type I CAR orthologues. Carboxylic acid reduction by Ancestral CARs was confirmed. Each showed a preference for aromatic carboxylic acids. AncCARs also showed improved tolerance to solvents, pH and in vivo-like salt-like conditions. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher. Two ThDP enzymes were discovered using metagenomics. These were assessed in silico through homology modelling and docking simulations. Furthermore, this study has demonstrated the importance of each tool in the discovery of new enzymes from within the ThDP family. Our homology models were used in docking simulations with unique carboligation-like intermediates allowing a rationalization of the reactions and stereoisomerism of the products. Two functional enzymes ThDP enzymes were identified that are capable of producing PAC; one from Thermus thermophilus and another from bacterium HR16.
Abstract.
2021
Barker S, Harding SV, Gray D, Richards MI, Atkins HS, Harmer NJ (2021). Drug screening to identify compounds to act as co-therapies for the treatment of Burkholderia species.
PLOS ONE,
16(3), e0248119-e0248119.
Abstract:
Drug screening to identify compounds to act as co-therapies for the treatment of Burkholderia species
Burkholderia pseudomallei is a soil-dwelling organism present throughout the tropics. It is the causative agent of melioidosis, a disease that is believed to kill 89,000 people per year. It is naturally resistant to many antibiotics, requiring at least two weeks of intravenous treatment with ceftazidime, imipenem or meropenem followed by 6 months of orally delivered co-trimoxazole. This places a large treatment burden on the predominantly middle-income nations where the majority of disease occurs. We have established a high-throughput assay for compounds that could be used as a co-therapy to potentiate the effect of ceftazidime, using the related non-pathogenic bacterium Burkholderia thailandensis as a surrogate. Optimization of the assay gave a Z’ factor of 0.68. We screened a library of 61,250 compounds and identified 29 compounds with a pIC50 (-log10(IC50)) greater than five. Detailed investigation allowed us to down select to six “best in class” compounds, which included the licensed drug chloroxine. Co-treatment of B. thailandensis with ceftazidime and chloroxine reduced culturable cell numbers by two orders of magnitude over 48 hours, compared to treatment with ceftazidime alone. Hit expansion around chloroxine was performed using commercially available compounds. Minor modifications to the structure abolished activity, suggesting that chloroxine likely acts against a specific target. Finally, an initial study demonstrates the utility of chloroxine to act as a co-therapy to potentiate the effect of ceftazidime against B. pseudomallei. This approach successfully identified potential co-therapies for a recalcitrant Gram-negative bacterial species. Our assay could be used more widely to aid in chemotherapy to treat infections caused by these bacteria.
Abstract.
De Rose SA, Finnigan W, Harmer NJ, Littlechild JA, consortium TH, Bettina S, Christopher B, Christina S, Benjamin M, N. IM, et al (2021). Production of the Extremolyte Cyclic 2,3-Diphosphoglycerate Using Thermus thermophilus as a Whole-Cell Factory. Frontiers in Catalysis, 1
De Rose SA, Harmer N, Littlechild J (2021). Production of the extremolyte cyclic 2,3-diphosphoglycerate using Thermus thermophilus as a whole-cell factory.
Abstract:
Production of the extremolyte cyclic 2,3-diphosphoglycerate using Thermus thermophilus as a whole-cell factory
Osmolytes protect microbial cells against temperature, osmolarity and other stresses. The osmolyte cyclic 2,3-diphosphoglycerate, originally isolated from the thermophilic archaeon Methanothermus fervidus, naturally protects cellular proteins under extreme conditions. The biosynthetic pathway for cyclic 2,3-diphosphoglycerate has been introduced into the thermophilic bacterium Thermus thermophilus. The two enzymes in this synthetic pathway, 2-phosphoglycerate kinase and cyclic diphosphoglycerate synthetase, were incorporated into a newly designed modular BioBricks vector. The expression of this two-enzyme cascade resulted in the whole cell production of cyclic 2,3 diphosphoglycerate. In vivo production of cyclic 2,3-diphosphoglycerate was confirmed by mass spectrometry to a concentration up to 650 µM. This study demonstrates the feasibility of using this well studied thermophilic bacterium as a host in a whole-cell factory approach to produce cyclic 2,3 diphosphoglycerate. This raises the potential for commercialisation of cDPG for cosmetic and healthcare applications. Our work demonstrates the potential of Thermus thermophilus as an alternative host for other high value small organic molecules of industrial interest.
Abstract.
De Rose S, Harmer N, Littlechild J, Finnigan W (2021). Production of the extremolyte cyclic 2,3-diphosphoglycerate using Thermus thermophilus as a whole-cell factory- DATASET.
Roy S, Vivoli Vega M, Ames J, Britten N, Kent A, Evans K, Isupov M, Harmer N (2021). Structure and function of N-acetylglucosamine kinase illuminates the catalytic mechanism of ROK kinases - experimental data.
Harmer NJ, Hill AM (2021). Unique Data Sets and Bespoke Laboratory Videos: Teaching and Assessing of Experimental Methods and Data Analysis in a Pandemic. Journal of Chemical Education, 98(12), 4094-4100.
2020
Bayliss M, Donaldson MI, Pergolizzi G, Scott AE, Nepogodiev SA, Beales L, Whelan M, Rosenberg W, Peyret H, Lomonossoff GP, et al (2020). Assessments of hepatitis B virus-like particles and Crm197 as carrier proteins in melioidosis glycoconjugate vaccines.
Cross A (2020). Defining the O-antigen biosynthetic pathways in zoonotic Coxiella burnetii: Studies of dTDP-sugar biosynthesis and LPS extraction.
Abstract:
Defining the O-antigen biosynthetic pathways in zoonotic Coxiella burnetii: Studies of dTDP-sugar biosynthesis and LPS extraction
Coxiella burnetii, the causative agent of Q fever, is a versatile, highly infectious select agent. Due to the immunogenic nature of its LPS-linked O-antigen, and this conveying the main determinant of virulence, a synthetic biology approach is being applied to study this molecule, with a view towards glycoconjugate vaccine design.
This thesis presents a dual approach to study of the C. burnetii O-antigen: direct characterisation of O-antigen biosynthetic enzymes, and the design of a phenol-free method by which to extract LPS material. For the former, studies focussed on characterisation of CBU_1838 as a dTDP-sugar isomerase proposed to be involved in the biosynthesis of DHHS, an O-antigen component, and a sugar unique to Coxiella. Characterisation through spectrophotometric assays, analysis of solvent exchange, and structural studies were run in parallel with another uncharacterised dTDP-sugar isomerase, StrM from Streptomyces griseus. From both kinetic assays coupled to the E. coli rhamnose-biosynthetic enzymes, and studies of solvent exchange, it is shown here that both of these query dTDP-sugar isomerases catalyse double-epimerisation of dTDP-4-keto-6-deoxy-glucose at positions 3″ and 5″. Additionally, structural studies of CBU_1838 revealed a single amino acid difference in the active site, compared to a panel of reference dTDP-sugar isomerases. From analysis of dTDP binding, and the docking of substrate-analogs, it is clear that this single residue could allow stabilisation of the hypothesised true substrate of CBU_1838, dTDP-4-keto-6-hydroxy-glucose.
Surreptitiously, preparative experiments for studies of dTDP-sugar isomerase-catalysed solvent exchange led to a novel discovery about the dTDP-glucose 4,6-dehydratase, RmlB: whilst the overall reaction is irreversible, enzyme-mediated solvent exchange at position C5″ occurs when EcRmlB is incubated with its product, dTDP-4-keto-6-deoxy-glucose.
The second approach taken to O-antigen studies, a novel method for LPS extraction, unfortunately did not yield tangible results. However, methods for growth of the Nine Mile II strain of C. burnetii were optimised, and areas for extraction improvement have been highlighted.
Abstract.
Harmer N, Barker S, Harding S, Gray D, Richards M, Atkins H (2020). Drug screening to identify compounds to act as co-therapies for the treatment of Burkholderia species - underpinning data.
Cutlan R, De Rose S, Isupov MN, Littlechild JA, Harmer NJ (2020). Using enzyme cascades in biocatalysis: Highlight on transaminases and carboxylic acid reductases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1868(2), 140322-140322.
2019
Sheppard EC, Rogers S, Harmer NJ, Chahwan R (2019). A universal fluorescence-based toolkit for real-time quantification of DNA and RNA nuclease activity.
Sci Rep,
9(1).
Abstract:
A universal fluorescence-based toolkit for real-time quantification of DNA and RNA nuclease activity.
DNA and RNA nucleases play a critical role in a growing number of cellular processes ranging from DNA repair to immune surveillance. Nevertheless, many nucleases have unknown or poorly characterized activities. Elucidating nuclease substrate specificities and co-factors can support a more definitive understanding of cellular mechanisms in physiology and disease. Using fluorescence-based methods, we present a quick, safe, cost-effective, and real-time versatile nuclease assay, which uniquely studies nuclease enzyme kinetics. In conjunction with a substrate library we can now analyse nuclease catalytic rates, directionality, and substrate preferences. The assay is sensitive enough to detect kinetics of repair enzymes when confronted with DNA mismatches or DNA methylation sites. We have also extended our analysis to study the kinetics of human single-strand DNA nuclease TREX2, DNA polymerases, RNA, and RNA:DNA nucleases. These nucleases are involved in DNA repair, immune regulation, and have been associated with various diseases, including cancer and immune disorders.
Abstract.
Author URL.
Thomas A (2019). Ancestral sequence reconstruction as an accessible tool for the engineering of biocatalyst stability.
Abstract:
Ancestral sequence reconstruction as an accessible tool for the engineering of biocatalyst stability
Synthetic biology is the engineering of life to imbue non-natural functionality. As such, synthetic biology has considerable commercial potential, where synthetic metabolic pathways are utilised to convert low value substrates into high value products. High temperature biocatalysis offers several system-level benefits to synthetic biology, including increased dilution of substrate, increased reaction rates and decreased contamination risk. However, the current gamut of tools available for the engineering of thermostable proteins are either expensive, unreliable, or poorly understood, meaning their adoption into synthetic biology workflows is treacherous. This thesis focuses on the development of an accessible tool for the engineering of protein thermostability, based on the evolutionary biology tool ancestral sequence reconstruction (ASR). ASR allows researchers to walk back in time along the branches of a phylogeny and predict the most likely representation of a protein family’s ancestral state. It also has simple input requirements, and its output proteins are often observed to be thermostable, making ASR tractable to protein engineering.
Chapter 2 explores the applicability of multiple ASR methods to the engineering of a carboxylic acid reductase (CAR) biocatalyst. Despite the family emerging only 500 million years ago, ancestors presented considerable improvements in thermostability over their modern counterparts. We proceed to thoroughly characterise the ancestral enzymes for their inclusion into the CAR biocatalytic toolbox.
Chapter 3 explores why ASR derived proteins may be thermostable despite a mesophilic history. An in silico toolbox for tracking models of protein stability over simulated evolutionary time at the sequence, protein and population level is built. We provide considerable evidence that the sequence alignments of simulated protein families that evolved at marginal stability are saturated with stabilising residues. ASR therefore derives sequences from a dataset biased toward stabilisation.
Importantly, while ASR is accessible, it still requires a steep learning curve based on its requirements of phylogenetic expertise. In chapter 4, we utilise the evolutionary model produced in chapter 3 to develop a highly simplified and accessible ASR protocol. This protocol was then applied to engineer CAR enzymes that displayed dramatic increases in thermostability compared to both modern CARs and the thermostable AncCARs presented in chapter 2.
Abstract.
Harmer NJ, Roy S, Vivoli M (2019). Carbohydrate Kinases: a Conserved Mechanism Across Differing Folds. Catalysts, 9, 29-29.
Finnigan W, Cutlan R, Snajdrova R, Adams J, Littlechild J, Harmer NJ (2019). Engineering a Seven Enzyme Biotransformation using Mathematical Modelling and Characterized Enzyme Parts. ChemCatChem
finnigan W, Cutlan R, Snajdrova R, Adams J, Littlechild J, Harmer NJ (2019). Engineering a Seven Enzyme Biotransformation using Mathematical Modelling and Characterized Enzyme Parts (dataset).
Finnigan W, Cutlan R, Snajdrova R, Adams JP, Littlechild JA, Harmer NJ (2019). Engineering a seven enzyme biotransformation using mathematical modelling and characterized enzyme parts.
Thomas A, Cutlan R, Finnigan W, van der Giezen M, Harmer N (2019). Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction.
Communications Biology,
2(1).
Abstract:
Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction
AbstractCarboxylic acid reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) – a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis.
Abstract.
Thomas A, Cutlan R, Finnigan W, Van Der Giezen M, Harmer N (2019). Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction.
Abstract:
Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction
Carboxylic Acid Reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) – a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis.
Abstract.
Bradshaw WJ, Bruxelle J-F, Kovacs-Simon A, Harmer NJ, Janoir C, Péchiné S, Acharya KR, Michell SL (2019). Molecular features of lipoprotein CD0873: a potential vaccine against the human pathogen Clostridioides difficile.
J Biol Chem,
294(43), 15850-15861.
Abstract:
Molecular features of lipoprotein CD0873: a potential vaccine against the human pathogen Clostridioides difficile.
Clostridioides difficile is the primary cause of antibiotic-associated diarrhea and colitis, a healthcare-associated intestinal disease resulting in a significant fatality rate. Colonization of the gut is critical for C. difficile pathogenesis. The bacterial molecules essential for efficient colonization therefore offer great potential as vaccine candidates. Here we present findings demonstrating that the C. difficile immunogenic lipoprotein CD0873 plays a critical role in pathogen success in vivo We found that in a dixenic colonization model, a CD0873-positive strain of C. difficile significantly outcompeted a CD0873-negative strain. Immunization of mice with recombinant CD0873 prevented long-term gut colonization and was correlated with a strong secretory IgA immune response. We further present high-resolution crystal structures of CD0873, at 1.35-2.50 Å resolutions, offering a first view of the ligand-binding pocket of CD0873 and provide evidence that this lipoprotein adhesin is part of a tyrosine import system, an amino acid key in C. difficile infection. These findings suggest that CD0873 could serve as an effective component in a vaccine against C. difficile.
Abstract.
Author URL.
Sheppard E (2019). Nucleases and histone acetyltransferases in DNA repair and immune diversity.
Abstract:
Nucleases and histone acetyltransferases in DNA repair and immune diversity
DNA repair mechanisms are essential for genome maintenance and adaptive immunity. A careful balance must be achieved whereby highly accurate and efficient canonical repair protects the genome from accumulating mutations that lead to aging and cancer, and yet mutation and error-prone non-canonical repair is required for generating immune diversity.
Immune diversity is achieved within a tightly regulated environment in which mutator proteins are directed to the antibody locus to introduce a swathe of DNA damage. This produces high affinity antibodies that recognise an infinite number of invading pathogens. This process of secondary antibody diversification is dependent on both active transcription and DNA repair.
Downstream of histone signalling, DNA repair nucleases are recruited to remove the damaged bases. The structure of damaged regions in the DNA can have very different conformations depending on whether the source of the damage is endogenous or exogenous. Specific DNA nucleases recognise particular DNA substrates and generate DNA intermediates that are repaired in conjunction with polymerases and ligases.
Despite their multitude and importance to DNA repair, very few nucleases have been characterised, while the activities of some studied nucleases remain controversial. Conventional techniques for studying DNA nucleases have several disadvantages; they are hazardous, laborious, time-consuming, and capture nuclease activity in a discontinuous manner. Recognising a need for a safer, faster alternative, a fluorescence-based method has been developed for the study of DNA nucleases, nickases and polymerases.
Key histone modifications that are known to orchestrate canonical DNA repair have since been discovered to regulate non-canonical repair at the antibody locus. The Kat5 histone lysine acetyltransferase functions highly upstream of DNA repair and promotes active transcription, yet a role for Kat5 in secondary antibody diversification has not yet been established. Using chemical inhibitors to prevent the catalytic activities of Kat5, and the genetic method of an inducible degron system for rapid and reversible downregulation of Kat5, a role for Kat5 in secondary antibody diversification is recognised, and the research contributes to our current understanding of the DNA repair signal transduction pathway.
Abstract.
Cross AR, Baldwin VM, Roy S, Essex-Lopresti AE, Prior JL, Harmer NJ (2019). Zoonoses under our noses.
Microbes Infect,
21(1), 10-19.
Abstract:
Zoonoses under our noses.
One Health is an effective approach for the management of zoonotic disease in humans, animals and environments. Examples of the management of bacterial zoonoses in Europe and across the globe demonstrate that One Health approaches of international surveillance, information-sharing and appropriate intervention methods are required to successfully prevent and control disease outbreaks in both endemic and non-endemic regions. Additionally, a One Health approach enables effective preparation and response to bioterrorism threats.
Abstract.
Author URL.
2018
Winter AJ, Williams C, Isupov MN, Crocker H, Gromova M, Marsh P, Wilkinson OJ, Dillingham MS, Harmer NJ, Titball RW, et al (2018). The molecular basis of protein toxin HicA-dependent binding of the protein antitoxin HicB to DNA.
J Biol Chem,
293(50), 19429-19440.
Abstract:
The molecular basis of protein toxin HicA-dependent binding of the protein antitoxin HicB to DNA.
Toxin-antitoxin (TA) systems are present in many bacteria and play important roles in bacterial growth, physiology, and pathogenicity. Those that are best studied are the type II TA systems, in which both toxins and antitoxins are proteins. The HicAB system is one of the prototypic TA systems, found in many bacterial species. Complex interactions between the protein toxin (HicA), the protein antitoxin (HicB), and the DNA upstream of the encoding genes regulate the activity of this system, but few structural details are available about how HicA destabilizes the HicB-DNA complex. Here, we determined the X-ray structures of HicB and the HicAB complex to 1.8 and 2.5 Å resolution, respectively, and characterized their DNA interactions. This revealed that HicB forms a tetramer and HicA and HicB form a heterooctameric complex that involves structural reorganization of the C-terminal (DNA-binding) region of HicB. Our observations indicated that HicA has a profound impact on binding of HicB to DNA sequences upstream of hicAB in a stoichiometric-dependent way. At low ratios of HicA:HicB, there was no effect on DNA binding, but at higher ratios, the affinity for DNA declined cooperatively, driving dissociation of the HicA:HicB:DNA complex. These results reveal the structural mechanisms by which HicA de-represses the HicB-DNA complex.
Abstract.
Author URL.
2017
Harmer NJ, Vivoli M, Pang J (2017). A half-site multimeric enzyme achieves its cooperativity without conformational changes. Scientific Reports, 7, 16529-16529.
Vivoli M, Renou J, Chevalier A, Norville IH, Diaz S, Juli C, Atkins H, Holzgrabe U, Renard P-Y, Sarkar-Tyson M, et al (2017). A miniaturized peptidyl-prolyl isomerase enzyme assay.
Anal Biochem,
536, 59-68.
Abstract:
A miniaturized peptidyl-prolyl isomerase enzyme assay.
Prolyl-peptidyl isomerases (PPIases) are enzymes that are found in all living organisms. They form an essential part of the cellular protein folding homeostasis machinery. PPIases are associated with many important human diseases, e.g. cardiovascular disease, cancer and Alzheimer's. The development of novel PPIase inhibitors has been limited by the lack of a rapid, laboratory-based assay for these enzymes, as their substrates and products are challenging to distinguish. A well described continuous assay, coupled with the hydrolysis of a peptide by chymotrypsin is highly effective, but comparatively slow. To address this, we developed an improved version of the traditional assay using a temperature controlled plate reader. This assay allows semi-automated medium throughput assays in an academic laboratory for 84 samples per day. The assay shows lower errors, with an average Z' of 0.72. We further developed the assay using a fluorogenic peptide-based FRET probe. This provides an extremely sensitive PPIase assay using substrate at 200 nM, which approaches single turnover conditions. The fluorescent probe achieves an excellent quenching efficiency of 98.6%, and initial experiments showed acceptable Z' of 0.31 and 0.30 for cyclophilin a and hFKBP12 respectively. The assays provide an improved toolset for the quantitative, biochemical analysis of PPIases.
Abstract.
Author URL.
Bayliss M, Donaldson MI, Nepogodiev SA, Pergolizzi G, Scott AE, Harmer NJ, Field RA, Prior JL (2017). Structural characterisation of the capsular polysaccharide expressed by Burkholderia thailandensis strain E555:: wbiI (pKnock-KmR) and assessment of the significance of the 2-O-acetyl group in immune protection.
Carbohydr Res,
452, 17-24.
Abstract:
Structural characterisation of the capsular polysaccharide expressed by Burkholderia thailandensis strain E555:: wbiI (pKnock-KmR) and assessment of the significance of the 2-O-acetyl group in immune protection.
Burkholderia pseudomallei and its close relative B. mallei are human pathogens that are classified as Tier 1 bio-threat agents. Both organisms have previously been shown to constitutively produce a capsular polysaccharide (CPS) that is both a virulence determinant and protective antigen. Extraction and purification of CPS for use as a potential vaccine candidate requires containment level 3 laboratories which is expensive and time-consuming. B. thailandensis strain E555 is closely related to B. pseudomallei and B. mallei, but is non-pathogenic to humans and based on immunological cross-reactivity has previously been shown to express a B. pseudomallei-like CPS. In this study, capsular polysaccharide isolated from an O-antigen deficient strain of B. thailandensis E555 was identified by 1H and 13C NMR spectroscopy as -3-)-2-O-acetyl-6-deoxy-β-d-manno-heptopyranose-(-1, and identical to that produced by B. pseudomallei. This was further substantiated by anti-CPS monoclonal antibody binding. In connection with the production of CPS fragments for use in glycoconjugate vaccines, we set out to assess the importance or otherwise of the CPS 2-OAc groups in immune protection. To this end conjugates of the native and de-O-acetylated CPS with the Hc fragment of tetanus toxin (TetHc) were used as vaccines in a mouse model of melioidosis. The level of protection provided by deacetylated CPS was significantly lower than that from native, acetylated CPS. In addition, sera from mice vaccinated with the deacetylated CPS conjugate did not recognise native CPS. This suggests that CPS extracted from B. thailandensis can be used as antigen and that the acetyl group is essential for protection.
Abstract.
Author URL.
Steinberg G, Harmer NJ, Schuster M, Kilaru S (2017). Woronin body-based sealing of septal pores.
Fungal Genet Biol,
109, 53-55.
Abstract:
Woronin body-based sealing of septal pores.
In ascomycete fungi, hyphal cells are separated by perforate septa, which allow cell-to-cell communication. To protect against extensive wound-induced damage, septal pores are sealed by peroxisome-derived Woronin bodies (WBs). The mechanism underpinning WB movement is unknown, but cytoplasmic bulk flow may "flush" WBs into the pore. However, some studies suggest a controlled and active mechanism of WB movement. Indeed, in the wheat pathogen Zymoseptoria tritici cellular ATP prevents WBs from pore sealing in unwounded cells. Thus, cells appear to exert active control over WB closure. Here, we summarize our current understanding of WB-based pore sealing in ascomycete fungi.
Abstract.
Author URL.
2016
Finnigan W, Thomas A, Cromar H, Gough B, Snajdrova R, Adams JP, Littlechild JA, Harmer NJ (2016). Characterization of carboxylic acid reductases as enzymes in the toolbox for synthetic chemistry. ChemCatChem, in press
Seufert F, Kuhn M, Hein M, Weiwad M, Vivoli M, Norville IH, Sarkar-Tyson M, Marshall LE, Schweimer K, Bruhn H, et al (2016). Development, synthesis and structure-activity-relationships of inhibitors of the macrophage infectivity potentiator (Mip) proteins of Legionella pneumophila and Burkholderia pseudomallei.
Bioorg Med Chem,
24(21), 5134-5147.
Abstract:
Development, synthesis and structure-activity-relationships of inhibitors of the macrophage infectivity potentiator (Mip) proteins of Legionella pneumophila and Burkholderia pseudomallei.
The bacteria Burkholderia pseudomallei and Legionella pneumophila cause severe diseases like melioidosis and Legionnaire's disease with high mortality rates despite antibiotic treatment. Due to increasing antibiotic resistances against these and other Gram-negative bacteria, alternative therapeutical strategies are in urgent demand. As a virulence factor, the macrophage infectivity potentiator (Mip) protein constitutes an attractive target. The Mip proteins of B. pseudomallei and L. pneumophila exhibit peptidyl-prolyl cis/trans isomerase (PPIase) activity and belong to the PPIase superfamily. In previous studies, the pipecolic acid moiety proved to be a valuable scaffold for inhibiting this PPIase activity. Thus, a library of pipecolic acid derivatives was established guided by structural information and computational analyses of the binding site and possible binding modes. Stability and toxicity considerations were taken into account in iterative extensions of the library. Synthesis and evaluation of the compounds in PPIase assays resulted in highly active inhibitors. The activities can be interpreted in terms of a common binding mode obtained by docking calculations.
Abstract.
Author URL.
N'Diaye A, Mijouin L, Hillion M, Diaz S, Konto-Ghiorghi Y, Percoco G, Chevalier S, Lefeuvre L, Harmer NJ, Lesouhaitier O, et al (2016). Effect of Substance P in Staphylococcus aureus and Staphylococcus epidermidis Virulence: Implication for Skin Homeostasis.
FRONTIERS IN MICROBIOLOGY,
7 Author URL.
Harmer NJ, Chahwan R (2016). Isotype switching: Mouse IgG3 constant region drives increased affinity for polysaccharide antigens.
Virulence,
7(6), 623-626.
Author URL.
sayer C, Finnigan W, Isupov MN, Levisson M, Kengen SWM, van der Oost J, Harmer NJ, Littlechild JA (2016). Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site.
Scientific Reports,
6, 25542-25542.
Abstract:
Structural and biochemical characterisation of Archaeoglobus fulgidus esterase reveals a bound CoA molecule in the vicinity of the active site
A new carboxyl esterase, AF-Est2, from the hyperthermophilic archaeon Archaeoglobus
fulgidus has been cloned, over-expressed in Escherichia coli and biochemically and
structurally characterized. The enzyme has high activity towards short- to medium-chain pnitrophenyl
carboxylic esters with optimal activity towards the valerate ester. The AF-Est2
has good solvent and pH stability and is very thermostable, showing no loss of activity after
incubation for 30 min at 80 °C. The 1.4 Å resolution crystal structure of AF-Est2 reveals
Coenzyme a (CoA) bound in the vicinity of the active site. Despite the presence of CoA
bound to the AF-Est2 this enzyme has no CoA thioesterase activity. The pantetheine group of
CoA partially obstructs the active site alcohol pocket suggesting that this ligand has a role in
regulation of the enzyme activity. A comparison with closely related α/β hydrolase fold
2
enzyme structures shows that the AF-Est2 has unique structural features that allow CoA
binding. A comparison of the structure of AF-Est2 with the human carboxyl esterase 1, which
has CoA thioesterase activity, reveals that CoA is bound to different parts of the core domain
in these two enzymes and approaches the active site from opposite directions.
Abstract.
2015
Blaszczyk M, Harmer NJ, Chirgadze DY, Ascher DB, Blundell TL (2015). Achieving high signal-to-noise in cell regulatory systems: Spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors.
Progress in Biophysics and Molecular Biology,
118(3), 103-111.
Abstract:
Achieving high signal-to-noise in cell regulatory systems: Spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors
How is information communicated both within and between cells of living systems with high signal to noise? We discuss transmembrane signaling models involving two receptor tyrosine kinases: the fibroblast growth factor receptor (FGFR) and the MET receptor. We suggest that simple dimerization models might occur opportunistically giving rise to noise but cooperative clustering of the receptor tyrosine kinases observed in these systems is likely to be important for signal transduction. We propose that this may be a more general prerequisite for high signal to noise in transmembrane receptor signaling.
Abstract.
Blaszczyk M, Harmer NJ, Chirgadze DY, Ascher DB, Blundell TL (2015). Achieving high signal-to-noise in cell regulatory systems: Spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors.
Prog Biophys Mol Biol,
118(3), 103-111.
Abstract:
Achieving high signal-to-noise in cell regulatory systems: Spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors.
How is information communicated both within and between cells of living systems with high signal to noise? We discuss transmembrane signaling models involving two receptor tyrosine kinases: the fibroblast growth factor receptor (FGFR) and the MET receptor. We suggest that simple dimerization models might occur opportunistically giving rise to noise but cooperative clustering of the receptor tyrosine kinases observed in these systems is likely to be important for signal transduction. We propose that this may be a more general prerequisite for high signal to noise in transmembrane receptor signaling.
Abstract.
Author URL.
Blundell TL, Bolanos-Garcia V, Chirgadze DY, Harmer NJ, Lo T, Pellegrini L, Lynn Sibanda B (2015). Asymmetry in the multiprotein systems of molecular biology. In (Ed)
Science of Crystal Structures: Highlights in Crystallography, 231-237.
Abstract:
Asymmetry in the multiprotein systems of molecular biology
Abstract.
Rosay T, Bazire A, Diaz S, Clamens T, Blier A-S, Mijouin L, Hoffmann B, Sergent J-A, Bouffartigues E, Boireau W, et al (2015). Pseudomonas aeruginosa Expresses a Functional Human Natriuretic Peptide Receptor Ortholog: Involvement in Biofilm Formation.
mBio,
6(4).
Abstract:
Pseudomonas aeruginosa Expresses a Functional Human Natriuretic Peptide Receptor Ortholog: Involvement in Biofilm Formation.
UNLABELLED: Considerable evidence exists that bacteria detect eukaryotic communication molecules and modify their virulence accordingly. In previous studies, it has been demonstrated that the increasingly antibiotic-resistant pathogen Pseudomonas aeruginosa can detect the human hormones brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) at micromolar concentrations. In response, the bacterium modifies its behavior to adapt to the host physiology, increasing its overall virulence. The possibility of identifying the bacterial sensor for these hormones and interfering with this sensing mechanism offers an exciting opportunity to directly affect the infection process. Here, we show that BNP and CNP strongly decrease P. aeruginosa biofilm formation. Isatin, an antagonist of human natriuretic peptide receptors (NPR), prevents this effect. Furthermore, the human NPR-C receptor agonist cANF(4-23) mimics the effects of natriuretic peptides on P. aeruginosa, while sANP, the NPR-A receptor agonist, appears to be weakly active. We show in silico that NPR-C, a preferential CNP receptor, and the P. aeruginosa protein AmiC have similar three-dimensional (3D) structures and that both CNP and isatin bind to AmiC. We demonstrate that CNP acts as an AmiC agonist, enhancing the expression of the ami operon in P. aeruginosa. Binding of CNP and NPR-C agonists to AmiC was confirmed by microscale thermophoresis. Finally, using an amiC mutant strain, we demonstrated that AmiC is essential for CNP effects on biofilm formation. In conclusion, the AmiC bacterial sensor possesses structural and pharmacological profiles similar to those of the human NPR-C receptor and appears to be a bacterial receptor for human hormones that enables P. aeruginosa to modulate biofilm expression. IMPORTANCE: the bacterium Pseudomonas aeruginosa is a highly dangerous opportunist pathogen for immunocompromised hosts, especially cystic fibrosis patients. The sites of P. aeruginosa infection are varied, with predominance in the human lung, in which bacteria are in contact with host molecular messengers such as hormones. The C-type natriuretic peptide (CNP), a hormone produced by lung cells, has been described as a bacterial virulence enhancer. In this study, we showed that the CNP hormone counteracts P. aeruginosa biofilm formation and we identified the bacterial protein AmiC as the sensor involved in the CNP effects. We showed that AmiC could bind specifically CNP. These results show for the first time that a human hormone could be sensed by bacteria through a specific protein, which is an ortholog of the human receptor NPR-C. The bacterium would be able to modify its lifestyle by favoring virulence factor production while reducing biofilm formation.
Abstract.
Author URL.
Vivoli M, Isupov MN, Nicholas R, Hill A, Scott AE, Kosma P, Prior JL, Harmer NJ (2015). Unraveling the B. pseudomallei Heptokinase WcbL: from Structure to Drug Discovery.
Chemistry and Biology,
22(12), 1622-1632.
Abstract:
Unraveling the B. pseudomallei Heptokinase WcbL: from Structure to Drug Discovery
Gram-negative bacteria utilize heptoses as part of their repertoire of extracellular polysaccharide virulence determinants. Disruption of heptose biosynthesis offers an attractive target for novel antimicrobials. A critical step in the synthesis of heptoses is their 1-O phosphorylation, mediated by kinases such as HldE or WcbL. Here, we present the structure of WcbL from Burkholderia pseudomallei. We report that WcbL operates through a sequential ordered Bi-Bi mechanism, loading the heptose first and then ATP. We show that dimeric WcbL binds ATP anti-cooperatively in the absence of heptose, and cooperatively in its presence. Modeling of WcbL suggests that heptose binding causes an elegant switch in the hydrogen-bonding network, facilitating the binding of a second ATP molecule. Finally, we screened a library of drug-like fragments, identifying hits that potently inhibit WcbL. Our results provide a novel mechanism for control of substrate binding and emphasize WcbL as an attractive anti-microbial target for Gram-negative bacteria.
Abstract.
2014
Begley DW, Fox D, Jenner D, Juli C, Pierce PG, Abendroth J, Muruthi M, Safford K, Anderson V, Atkins K, et al (2014). A structural biology approach enables the development of antimicrobials targeting bacterial immunophilins.
Antimicrobial Agents and Chemotherapy,
58(3), 1458-1467.
Abstract:
A structural biology approach enables the development of antimicrobials targeting bacterial immunophilins
Macrophage infectivity potentiators (Mips) are immunophilin proteins and essential virulence factors for a range of pathogenic organisms. We applied a structural biology approach to characterize a Mip from Burkholderia pseudomallei (BpML1), the causative agent of melioidosis. Crystal structure and nuclear magnetic resonance analyses of BpML1 in complex with known macrocyclics and other derivatives led to the identification of a key chemical scaffold. This scaffold possesses inhibitory potency for BpML1 without the immunosuppressive components of related macrocyclic agents. Biophysical characterization of a compound series with this scaffold allowed binding site specificity in solution and potency determinations for rank ordering the set. The best compounds in this series possessed a low-micromolar affinity for BpML1, bound at the site of enzymatic activity, and inhibited a panel of homologous Mip proteins from other pathogenic bacteria, without demonstrating toxicity in human macrophages. Importantly, the in vitro activity of BpML1 was reduced by these compounds, leading to decreased macrophage infectivity and intracellular growth of Burkholderia pseudomallei. These compounds offer the potential for activity against a new class of antimicrobial targets and present the utility of a structure-based approach for novel antimicrobial drug discovery. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Abstract.
Vivoli M, Novak HR, Littlechild JA, Harmer NJ (2014). Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry. Journal of Visualized Experiments(91).
Vivoli M, Novak HR, Littlechild JA, Harmer NJ (2014). Determination of protein-ligand interactions using differential scanning fluorimetry.
J Vis Exp(91).
Abstract:
Determination of protein-ligand interactions using differential scanning fluorimetry.
A wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery. This technique has the advantage that it requires only a PCR machine suitable for quantitative PCR, and so suitable instrumentation is available in most institutions; an excellent range of protocols are already available; and there are strong precedents in the literature for multiple uses of the method. Past work has proposed several means of calculating dissociation constants from DSF data, but these are mathematically demanding. Here, we demonstrate a method for estimating dissociation constants from a moderate amount of DSF experimental data. These data can typically be collected and analyzed within a single day. We demonstrate how different models can be used to fit data collected from simple binding events, and where cooperative binding or independent binding sites are present. Finally, we present an example of data analysis in a case where standard models do not apply. These methods are illustrated with data collected on commercially available control proteins, and two proteins from our research program. Overall, our method provides a straightforward way for researchers to rapidly gain further insight into protein-ligand interactions using DSF.
Abstract.
Author URL.
Vivoli M, Ayres E, Beaumont E, Isupov MN, Harmer NJ (2014). Structural insights into WcbI, a novel polysaccharide-biosynthesis enzyme. IUCrJ, 1, 28-38.
Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, Titball RW (2014). The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation.
Biochem J,
459(2), 333-344.
Abstract:
The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation.
TA (toxin-antitoxin) systems are widely distributed amongst bacteria and are associated with the formation of antibiotic tolerant (persister) cells that may have involvement in chronic and recurrent disease. We show that overexpression of the Burkholderia pseudomallei HicA toxin causes growth arrest and increases the number of persister cells tolerant to ciprofloxacin or ceftazidime. Furthermore, our data show that persistence towards ciprofloxacin or ceftazidime can be differentially modulated depending on the level of induction of HicA expression. Deleting the hicAB locus from B. pseudomallei K96243 significantly reduced persister cell frequencies following exposure to ciprofloxacin, but not ceftazidime. The structure of HicA(H24A) was solved by NMR and forms a dsRBD-like (dsRNA-binding domain-like) fold, composed of a triple-stranded β-sheet, with two helices packed against one face. The surface of the protein is highly positively charged indicative of an RNA-binding protein and His24 and Gly22 were functionality important residues. This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized.
Abstract.
Author URL.
2013
Butt A, Harmer N, Müller C, Titball RW (2013). Identification of type II toxin-antitoxin modules in Burkholderia pseudomallei.
FEMS Microbiol Lett,
338(1), 86-94.
Abstract:
Identification of type II toxin-antitoxin modules in Burkholderia pseudomallei
Type II toxin-antitoxin (TA) systems are believed to be widely distributed amongst bacteria although their biological functions are not clear. We have identified eight candidate TA systems in the genome of the human pathogen Burkholderia pseudomallei. Five of these were located in genome islands. of the candidate toxins, BPSL0175 (RelE1) or BPSS1060 (RelE2) caused growth to cease when expressed in Escherichia coli, whereas expression of BPSS0390 (HicA) or BPSS1584 (HipA) (in an E. coli ΔhipBA background) caused a reduction in the number of culturable bacteria. The cognate antitoxins could restore growth and culturability of cells.
Abstract.
2012
Cuccui J, Milne TS, Harmer N, George AJ, Harding SV, Dean RE, Scott AE, Sarkar-Tyson M, Wren BW, Titball RW, et al (2012). Characterization of the Burkholderia pseudomallei K96243 capsular polysaccharide I coding region.
Infection and Immunity,
80, 1209-1221.
Abstract:
Characterization of the Burkholderia pseudomallei K96243 capsular polysaccharide I coding region
Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to regions of Southeast Asia and Northern Australia. Both humans and a range of other animal species are susceptible to melioidosis, and the production of a group 3 polysaccharide capsule in B. pseudomallei is essential for virulence. B. pseudomallei capsular polysaccharide (CPS) I comprises unbranched manno-heptopyranose residues and is encoded by a 34.5-kb locus on chromosome 1. Despite the importance of this locus, the role of all of the genes within this region is unclear. We inactivated 18 of these genes and analyzed their phenotype using Western blotting and immunofluorescence staining. Furthermore, by combining this approach with bioinformatic analysis, we were able to develop a model for CPS I biosynthesis and export. We report that inactivating gmhA, wcbJ, and wcbN in B. pseudomallei K96243 retains the immunogenic integrity of the polysaccharide despite causing attenuation in the BALB/c murine infection model. Mice immunized with the B. pseudomallei K96243 mutants lacking a functional copy of either gmhA or wcbJ were afforded significant levels of protection against a wild-type B. pseudomallei K96243 challenge.
Abstract.
Author URL.
Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G (2012). Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase.
EMBO J,
31(1), 214-227.
Abstract:
Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase.
Plant infection by pathogenic fungi requires polarized secretion of enzymes, but little is known about the delivery pathways. Here, we investigate the secretion of cell wall-forming chitin synthases (CHSs) in the corn pathogen Ustilago maydis. We show that peripheral filamentous actin (F-actin) and central microtubules (MTs) form independent tracks for CHSs delivery and both cooperate in cell morphogenesis. The enzyme Mcs1, a CHS that contains a myosin-17 motor domain, is travelling along both MTs and F-actin. This transport is independent of kinesin-3, but mediated by kinesin-1 and myosin-5. Arriving vesicles pause beneath the plasma membrane, but only ~15% of them get exocytosed and the majority is returned to the cell centre by the motor dynein. Successful exocytosis at the cell tip and, to a lesser extent at the lateral parts of the cell requires the motor domain of Mcs1, which captures and tethers the vesicles prior to secretion. Consistently, Mcs1-bound vesicles transiently bind F-actin but show no motility in vitro. Thus, kinesin-1, myosin-5 and dynein mediate bi-directional motility, whereas myosin-17 introduces a symmetry break that allows polarized secretion.
Abstract.
Author URL.
2011
Norville IH, Harmer NJ, Harding SV, Fischer G, Keith KE, Brown KA, Sarkar-Tyson M, Titball RW (2011). A Burkholderia pseudomallei macrophage infectivity potentiator-like protein has rapamycin-inhibitable peptidylprolyl isomerase activity and pleiotropic effects on virulence.
Infect Immun,
79(11), 4299-4307.
Abstract:
A Burkholderia pseudomallei macrophage infectivity potentiator-like protein has rapamycin-inhibitable peptidylprolyl isomerase activity and pleiotropic effects on virulence.
Macrophage infectivity potentiators (Mips) are a group of virulence factors encoded by pathogenic bacteria such as Legionella, Chlamydia, and Neisseria species. Mips are part of the FK506-binding protein (FKBP) family, whose members typically exhibit peptidylprolyl cis-trans isomerase (PPIase) activity which is inhibitable by the immunosuppressants FK506 and rapamycin. Here we describe the identification and characterization of BPSS1823, a Mip-like protein in the intracellular pathogen Burkholderia pseudomallei. Recombinant BPSS1823 protein has rapamycin-inhibitable PPIase activity, indicating that it is a functional FKBP. A mutant strain generated by deletion of BPSS1823 in B. pseudomallei exhibited a reduced ability to survive within cells and significant attenuation in vivo, suggesting that BPSS1823 is important for B. pseudomallei virulence. In addition, pleiotropic effects were observed with a reduction in virulence mechanisms, including resistance to host killing mechanisms, swarming motility, and protease production.
Abstract.
Author URL.
Norville IH, Breitbach K, Eske-Pogodda K, Harmer NJ, Sarkar-Tyson M, Titball RW, Steinmetz I (2011). A novel FK-506-binding-like protein that lacks peptidyl-prolyl isomerase activity is involved in intracellular infection and in vivo virulence of Burkholderia pseudomallei.
Microbiology (Reading),
157(Pt 9), 2629-2638.
Abstract:
A novel FK-506-binding-like protein that lacks peptidyl-prolyl isomerase activity is involved in intracellular infection and in vivo virulence of Burkholderia pseudomallei.
Burkholderia pseudomallei is a facultative intracellular bacterial pathogen causing melioidosis, an often fatal infectious disease that is endemic in several tropical and subtropical areas around the world. We previously described a Ptk2 cell-based plaque assay screening system of B. pseudomallei transposon mutants that led to the identification of several novel virulence determinants. Using this approach we identified a mutant with reduced plaque formation in which the BPSL0918 gene was disrupted. BPSL0918 encodes a putative FK-506-binding protein (FKBP) representing a family of proteins that typically possess peptidyl-prolyl isomerase (PPIase) activity. A B. pseudomallei ΔBPSL0918 mutant showed a severely impaired ability to resist intracellular killing and to replicate within primary macrophages. Complementation of the mutant fully restored its ability to grow intracellularly. Moreover, B. pseudomallei ΔBPSL0918 was significantly attenuated in a murine model of infection. Structural modelling confirmed a modified FKBP fold of the BPSL0918-encoded protein but unlike virulence-associated FKBPs from other pathogenic bacteria, recombinant BPSL0918 protein did not possess PPIase activity in vitro. In accordance with this observation BPSL0918 exhibits several mutations in residues that have been proposed to mediate PPIase activity in other FKBPs. To our knowledge this B. pseudomallei FKBP represents the first example of this protein family which lacks PPIase activity but is important in intracellular infection of a bacterial pathogen.
Abstract.
Author URL.
Thomas RM, Twine SM, Fulton KM, Tessier L, Kilmury SLN, Ding W, Harmer N, Michell SL, Oyston PCF, Titbal RW, et al (2011). Glycosylation of DsbA in Francisella tularensis subsp. Tularensis.
Journal of Bacteriology,
193(19), 5498-5509.
Abstract:
Glycosylation of DsbA in Francisella tularensis subsp. Tularensis
In Francisella tularensis subsp. tularensis, DsbA has been shown to be an essential virulence factor and has been observed to migrate to multiple protein spots on two-dimensional electrophoresis gels. In this work, we show that the protein is modified with a 1,156-Da glycan moiety in O-linkage. The results of mass spectrometry studies suggest that the glycan is a hexasaccharide, comprised of N-acetylhexosamines, hexoses, and an unknown monosaccharide. Disruption of two genes within the FTT0789-FTT0800 putative polysaccharide locus, including a galE homologue (FTT0791) and a putative glycosyltransferase (FTT0798), resulted in loss of glycan modification of DsbA. The F. tularensis subsp. tularensis ΔFTT0798 and ΔFTT0791::Cm mutants remained virulent in the murine model of subcutaneous tularemia. This indicates that glycosylation of DsbA does not play a major role in virulence under these conditions. This is the first report of the detailed characterization of the DsbA glycan and putative role of the FTT0789-FTT0800 gene cluster in glycan biosynthesis. © 2011, American Society for Microbiology.
Abstract.
Harmer NJ, Norville I, Zheng S, O'Shea K, Sarkar-Tyson M, Titball RW, Varani G (2011). THE BURKHOLDERIA PSEUDOMALLEI MIP PROTEIN, a VIRULENCE FACTOR AND DRUG TARGET. Society for General Microbiology Spring Conference. 11th - 14th Apr 2011.
Abstract:
THE BURKHOLDERIA PSEUDOMALLEI MIP PROTEIN, a VIRULENCE FACTOR AND DRUG TARGET
Abstract.
Norville I, Zheng S, O'Shea K, Sarkar-Tyson M, Titball RW, Varani G, Harmer NJ (2011). THE BURKHOLDERIA PSEUDOMALLEI MIP PROTEIN, a VIRULENCE FACTOR AND DRUG TARGET. SWSBC 2011. 11th - 12th Jul 2011.
Abstract:
THE BURKHOLDERIA PSEUDOMALLEI MIP PROTEIN, a VIRULENCE FACTOR AND DRUG TARGET
Abstract.
Norville I, O'Shea K, Sarkar-Tyson M, Zheng S, Titball RW, Varani G, Harmer NJ (2011). The structure of a Burkholderia pseudomallei immunophilin-inhibitor complex reveals new approaches to antimicrobial development.
Biochemical Journal,
437, 413-422.
Abstract:
The structure of a Burkholderia pseudomallei immunophilin-inhibitor complex reveals new approaches to antimicrobial development
Macrophage infectivity potentiators (Mips) are a subset of immunophilins associated with virulence in a range of micro-organisms. These proteins possess prolyl-peptide isomerase activity and are inhibited by drugs including rapamycin and tacrolimus. We determined the structure of the Mip homologue (BpML1) from the human pathogen and biowarfare threat Burkholderia pseudomallei by nuclear magnetic resonance and X-ray crystallography. The crystal structure suggests that key catalytic residues in the BpML1 active site have unexpected conformational flexibility consistent with a role in catalysis. The structure further revealed BpML1 binding to a helical peptide, in a manner resembling the physiological interaction of human TGFβ receptor 1 with the human immunophilin FKBP12. Furthermore, the structure of BpML1 bound to the class inhibitor cycloheximide N-ethylethanoate showed that this inhibitor mimics such a helical peptide, in contrast to the extended prolyl peptide mimicking shown by inhibitors such as tacrolimus. We suggest that Mips, and potentially other bacterial immunophilins, participate in protein-protein interactions in addition to their prolyl-peptide isomerase activity, and that some roles of Mip proteins in virulence are independent of their prolyl-peptide isomerase activity.
Abstract.
Norville IH, O'Shea K, Sarkar-Tyson M, Zheng S, Titball RW, Varani G, Harmer NJ (2011). The structure of a Burkholderia pseudomallei immunophilin-inhibitor complex reveals new approaches to antimicrobial development.
Biochem J,
437(3), 413-422.
Abstract:
The structure of a Burkholderia pseudomallei immunophilin-inhibitor complex reveals new approaches to antimicrobial development.
Mips (macrophage infectivity potentiators) are a subset of immunophilins associated with virulence in a range of micro-organisms. These proteins possess peptidylprolyl isomerase activity and are inhibited by drugs including rapamycin and tacrolimus. We determined the structure of the Mip homologue [BpML1 (Burkholderia pseudomallei Mip-like protein 1)] from the human pathogen and biowarfare threat B. pseudomallei by NMR and X-ray crystallography. The crystal structure suggests that key catalytic residues in the BpML1 active site have unexpected conformational flexibility consistent with a role in catalysis. The structure further revealed BpML1 binding to a helical peptide, in a manner resembling the physiological interaction of human TGFβRI (transforming growth factor β receptor I) with the human immunophilin FKBP12 (FK506-binding protein 12). Furthermore, the structure of BpML1 bound to the class inhibitor cycloheximide N-ethylethanoate showed that this inhibitor mimics such a helical peptide, in contrast with the extended prolyl-peptide mimicking shown by inhibitors such as tacrolimus. We suggest that Mips, and potentially other bacterial immunophilins, participate in protein-protein interactions in addition to their peptidylprolyl isomerase activity, and that some roles of Mip proteins in virulence are independent of their peptidylprolyl isomerase activity.
Abstract.
Author URL.
2010
Harmer NJ (2010). Structure and function of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei, an unusual metalloenzyme. Enzymes, Cofactors and Metabolic pathways. 18th - 23rd Jul 2010.
Abstract:
Structure and function of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei, an unusual metalloenzyme
Abstract.
Harmer NJ, Norville I, Zheng S, O'Shea K, Sarkar-Tyson M, Titball RW, Varani G (2010). THE BURKHOLDERIA PSEUDOMALLEI MIP PROTEIN, a VIRULENCE FACTOR AND DRUG TARGET. Melioidosis 2010. 30th Nov - 3rd Dec 2010.
Abstract:
THE BURKHOLDERIA PSEUDOMALLEI MIP PROTEIN, a VIRULENCE FACTOR AND DRUG TARGET
Abstract.
Harmer NJ (2010). The Structure of Sedoheptulose-7-Phosphate Isomerase from Burkholderia pseudomallei Reveals a Zinc Binding Site at the Heart of the Active Site.
JOURNAL OF MOLECULAR BIOLOGY,
400(3), 379-392.
Author URL.
2008
Goodger SJ, Robinson CJ, Murphy KJ, Gasiunas N, Harmer NJ, Blundell TL, Pye DA, Gallagher JT (2008). Evidence that heparin saccharides promote FGF2 mitogeneisis through two distinct mechanisms. Journal of Biological Chemistry, 283, 13001-13008.
2007
Harmer NJ, King, J.D. Palmer, C.M. Preston, A. Maskell DJ, Blundell TL (2007). Cloning, expression, purification and preliminary crystallographic analysis of the short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica. Acta Crystallographica F, 63(8), 711-715.
King JD, Harmer NJ, Preston A, Palmer CM, Rejzek M, Field RA, Blundell TL, Maskell DJ (2007). Predicting protein function from structure - the roles of short chain dehydrogenase / reductase enzymes in bordetella O-antigen biosynthesis. Journal of Molecular Biology, 374, 749-763.
Harmer NJ (2007). The fibroblast growth factor (FGF) - FGF receptor complex: Progress towards the physiological state.
Topics in Current Chemistry,
272, 83-116.
Abstract:
The fibroblast growth factor (FGF) - FGF receptor complex: Progress towards the physiological state
Signaling by the fibroblast growth factors (FGFs) and their receptors (FGFRs) has been implicated in a wide range of diseases including cancer and arthritis. The need to understand the mechanisms of these diseases, and the potential for the development of novel therapeutics, has driven the characterization of complexes of the FGFs, FGFRs, and the co-receptor heparin. These efforts have led to the proposal of two models, based on crystal structures, for the biological signaling complex: these models show considerable differences that are of great importance to the mechanism of signaling, but nevertheless share common themes. The merits of these models have been illuminated by a range of further crystal structures that have revealed the more relevant conformations of each model. The development of methods in ultracentrifugation and mass spectrometry has allowed the analysis of both complexes in solution, and has suggested that both architectures bind only one molecule of heparin. New methods for sequencing heparin and preparing heparin derivatives have allowed the affinity of FGFs for heparins to be determined. Finally, evidence has accumulated for complexes involving more than two FGFRs, and tantalizing hints have emerged of how both crystallographic models may contribute to a larger "signalosome". © 2007 Springer-Verlag Berlin Heidelberg.
Abstract.
2006
Ryu EK, Cho, K.J. Kim, J.K. Harmer NJ, Blundell TL, Kim, K.H. (2006). Expression and purification of recombinant human fibroblast growth factor receptor in E. coli. Protein Expression and Purification, 49, 15-22.
Harmer NJ (2006). Insights into the role of heparan sulphate in fibroblast growth factor signalling. Biochemical Society Transactions, 34(3), 442-445.
Harmer NJ, Robinson CJ, Adam LE, Ilag LL, Robinson CV, Gallagher JT, Blundell TL (2006). Multimers of the fibroblast growth factor (FGF)-FGF receptor-saccharide complex are formed on long oligers of heparin. Biochemical Journal, 393(3), 741-748.
Blundell TL, Sibanda BL, Montalvao RW, Brewerton S, Chelliah V, Harmer NJ, Worth CL, Davies O, Burke D (2006). Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1467), 413-423.
2005
Harmer NJ, Sivac JM, Amaya E, Blundell TL (2005). 1.15 angstrom crystal structure of the X-tropicalis Spred 1 EVH1 domain suggests a fourth distinct peptide-binding mechanism within the EVH1 family. FEBS Letters, 579(5), 1161-1166.
Harmer NJ (2005). Chapter 14 Role of Heparan Sulfate in Fibroblast Growth Factor Signaling. In (Ed) Chemistry and Biology of Heparin and Heparan Sulfate, 399-434.
Robinson CJ, Harmer, N.J. Goodger, S.J. Blundell, T.L. Gallagher JT (2005). Cooperative dimerization of FGF1 upon a single heparin saccharide may drive the formation of 2:2:1 FGF-FGFR-heparin ternary complexes. Journal of Biological Chemistry, 280, 42274-42282.
Harmer, N.J. (2005). Role of heparan sulfate in fibroblast growth factor signaling. In Garg H, Linhardt R, Hales C (Eds.) Chemistry and Biology of Heparin and Heparan Sulfate, New York: Elsevier.
2004
Robinson CJ, Harmer NJ, Blundell TL, Gallagher JT (2004). Studying the role of heparin in the formation of FGF1-FGFR2 complexes using gel chromatography.
Author URL.
Harmer NJ, Pellegrini L, Chirgadze D, Fernandez-Recio J, Blundell TL (2004). The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF family and offers a structural basis for its unusual receptor affinity. Biochemistry, 43(3), 629-640.
Harmer NJ, Ilag LL, Mulloy B, Pellegrini L, Robinson CV, Blundell TL (2004). Towards a resolution of the stoichiometry of the fibroblast growth factor (FGF) - FGF receptor-Heparin complex. Journal of Molecular Biology, 339(4), 821-834.
2003
Harmer NJ, Chirgadze D, Kim KH, Pellegrini L, Blundell TL (2003). The structural biology of growth factor receptor activation. Biophysical Chemistry, 100, 545-553.
2002
Schuh AC, Watkins, N.A. Nguyen, Q. Harmer, N.J. Lin M, Prosper JY, Campbell K, Sutherland DR, Metcalfe P, Horsfeld W, et al (2002). A tyrosine703serine polymorphism of CD109 defines the Gov platelet alloantigens. Blood, 99, 1692-1698.
Blundell TL, Bolanos-Garcia V, Chirgadze DY, Harmer NJ, Lo T, Pellegrini L, Sibanda BL (2002). Asymmetry in the multiprotein systems of molecular biology.
Structural Chemistry,
13(3-4), 405-412.
Abstract:
Asymmetry in the multiprotein systems of molecular biology
Signaling in living systems needs to achieve high specificity, to be reversible, and to achieve high signal to noise. Signaling mediated by multiprotein systems has evolved that avoids the requirement for high-affinity binary complexes that would be difficult to reverse and which, in the overcrowded cell, would lead to excessive noise in the system. Symmetrical structures are only occasionally formed. When they are, it is principally to colocate components, for example, the tyrosyl kinases of growth factors, where dimers form. Symmetry is, however, often broken, presumably to create more sensitivity and specificity in the signaling system by assembling other components, into higher-order multiprotein systems. The binding of a single heparin to two 1:1 FGF:FGFR complexes is an example, as is the binding of a single ligase to the Xrcc4 dimer, perhaps so creating a further DNA-binding site.
Abstract.
2001
Ouwehand WH, Watkins NA, Nguyen Q, Harmer NJ, Lin M, Prosper JYA, Campbell K, Sutherland DR, Metcalfe P, Horsfall W, et al (2001). A Tyrosine(703) serine polymorphism of CD109 defines the Gov platelet alloantigens.
BLOOD,
98(11), 443A-443A.
Author URL.
Nagendra HG, Harrington, A.E. Harmer, N.J. Pellegrini, L. Blundell TL, Burke DF (2001). Sequence analyses and comparative modeling of fly and worm fibroblast growth factor receptors indicate that the determinants for FGF and heparin binding are retained in evolution. FEBS Letters, 501, 51-58.