MSci Data Science

UCAS code GG17
Duration 4 Years
Typical offer AAA-ABB; IB: 36-32; BTEC: DDD-DDM
Discipline Data Science
Location Taught in Exeter Streatham (Exeter)

Overview

Data Science at the University of Exeter

MSci Data Science will provide outstanding training in data science. Course content will cover the fundamental mathematical and computational techniques underpinning data science applications, with coverage of machine learning, statistical modelling and tools for handling large and complex datasets. It will provide you with an overview of the social and governance context for data science.

Content will be delivered through a combination of lectures, and individual- and group-based projects using real world data on the Exeter Streatham campus.

Programme structure

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Data Science is a growth area with excellent career development potential and the University of Exeter is making significant new investment in this area. MSci Data Science is  only one of three Data Science programmes delivered by a Russell Group university and is the first to be delivered in the South of the UK.

The course covers the core areas of mathematics and computer science. It also includes new modules which will introduce you to applied data science as well as social context. Research projects in each academic year will allow you to develop research and project management skills in an area of interest, using real world datasets, guided by a leading academic supervisor.

Please note: This programme is currently in development. The modules listed below are indicative of the topic areas you can expect to cover on the course, but are subject to change.

Year 1

In your first year, you will be introduced to the fundamental technical and professional skills needed to successfully engage with machine learning, artificial intelligence and data science. You will learn core knowledge and practical skills relating to data structures and algorithms that are commonly applied in this topic area, as well as some of the most common techniques and applications of AI and machine learning.

Year 2

In year 2 you will gain theoretical and practical understanding of some of the core techniques in machine learning and data science. You will also learn how techniques are applied to workflows linked to tackling challenges in real-world social issues. Through lectures and practical exercises, you will develop vital professional and interpersonal skills needed to work effectively in the mathematical and digital sector, including project management and teamwork.

Year 3

In your third year, alongside your individual project, you will explore the world of “big data” and its demands for high-performance computing (HPC) to take advantage of modern learning and statistical methods applied to novel datasets. You will then select up to five optional modules ensuring you gain a broad range of knowledge across Data Science.

Year 4 

Year 4 will comprise group and individual work as you carry out your final year projects. Optional modules will give you the opportunity to specialise in areas that are most suited to your interests, giving you a strong foothold for future career development.

 

Entry requirements 2019

Typical offer

A level: AAA-ABB;

IB: 36-32;

BTEC: DDD - DDM

Required subjects

A level

GCE AL Maths grade B

Candidates may offer GCE AL Maths, Pure Maths or Further Maths.

IB

IB Maths HL5 

BTEC Extended Diploma (2010 and 2016)

Applicants studying a BTEC Extended Diploma will also require GCE AL Maths grade B.

For any questions relating to entry requirements please contact the team via our online form or 01392 724061

International students

International students should check details of our English language requirements and may be interested in our Foundation programme for Engineering, Mathematics, Computer Science and Physical Sciences.

Further information

Please read the important information about our Typical offer.

For full and up-to-date information on applying to Exeter and entry requirements, including requirements for other types of qualification, please see the Applying section.

Learning and teaching

We make use of a variety of teaching styles, including lectures, seminars, workshops and tutorials. Most modules involve two or three lectures per week, so you would typically have about 10 lectures each week. In addition, workshops and tutorials support and develop what you’ve learnt in lectures and enable you to discuss the lecture material and coursework in more detail.

You’ll have over 15 hours of direct contact time per week with your tutors and you will be expected to supplement your lectures with independent study. You should expect your total workload to average about 40 hours per week during term time.

We’re actively engaged in introducing new methods of learning and teaching, including increasing use of interactive computer-based approaches to learning through our virtual learning environment, where the details of all modules are stored in an easily navigable website. You can access detailed information about modules and learning outcomes and interact through activities such as the discussion forums.

We aim to provide a supportive environment where students and staff work together in an informal and friendly atmosphere. The department has a student-focused approach to teaching, whereby all members of staff deal with questions on an individual basis. We operate an open door policy, so it is easy to consult individual members of staff or to fix appointments with them via email. We are a friendly group of staff and you will get to know us well during your time here.

A research and practice led culture

We believe every student benefits from being taught by experts active in research and practice. You will discuss the very latest ideas, research discoveries and new technologies in seminars and in the field and you will become actively involved in a research project yourself. All our academic staff are active in internationally-recognised scientific research across a wide range of topics. You will also be taught by leading industry practitioners.

Assessment

Modules are assessed by a combination of continuous assessment through small practical exercises, project work, essay writing, presentations and exam.

You must pass your first year assessment in order to progress to the second year, but the results do not count towards your degree classification. For three-year programmes, the assessments in the second and third years contribute to your final degree classification. For four-year programmes the assessments in the second, third and fourth years all contribute to your final degree classification.

Careers

There is an established strong market demand for suitably skilled data scientists and data science skills are increasingly being sought across the sectors, particularly by the finance and accounting industries, supermarkets, online retailers such as Amazon, and the NHS.

This Data Science course has been developed with partner employers, including IBM, the Met Office, South West Water, Black Swan and Oxygen House and has been designed to deliver skills that are most valued by employers. Modules will use the employers’ methods, platforms, software and data, to ensure that they are fully reflective of workplace practice. Throughout your studies you will conduct individual and group projects using real world data sets.

This course will prepare you to be an outstanding dynamic problem solver with an excellent technical skillset. In addition to learning the core principles of Mathematics and Computer Science, you will learn soft skills that employers have told us they are looking for, such as communication and presentation skills, and the ability to work effectively in a team.

The inclusion of individual- and group-based project work in every academic year will offer you an opportunity to apply your skills to solve real world problems and prepare you for future employment.

Contact us

Streatham Campus, Exeter


Web: Enquire online

Phone: +44 (0)1392 724061

Website: Visit the Computer Science website